Anales de la RANM

70 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 ESFINGOLÍPIDOS SENCILLOS CON ACTIVIDAD BIOLÓGICA Félix M. Goñi Urcelay Año 2018 · número 135 (01) · páginas 65 a 71 Phospholipase A 2 . Biochem Bioph Res Co. 1996; 220(3): 834-838. 20. Silva L, De Almeida RF, Fedorov A, Matos AP, Prieto M. Ceramide-platform formation and-induced biophysical changes in a fluid phospholipid membrane. Mol Membr Biol. 2006; 23(2): 137-148. 21. Sot J, Bagatolli LA, Goñi FM, Alonso A. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J. 2006; 90(3): 903-914. 22. Veiga MP, Arrondo JLR, Goñi FM, Alonso A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J. 1999; 76 (1): 342-350. 23. Fanani ML, Härtel S, Oliveira RG, Maggio, B. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophys J. 2002; 83(6): 3416-3424. 24. López-Montero I, Rodriguez N, Cribier S, Pohl A, Vélez M, Devaux PF. Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes. J Biol Chem. 2005; 280(27): 25811-25819. 25. Ruiz-Arguello MB, Basañez G, Goñi FM, Alonso A. Different effects of enzyme- generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem. 1996; 271(43): 26616-26621. 26. Montes LR, Ruiz-Arguello MB, Goñi FM, Alonso A. Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem. 2002; 277(14): 11788-11794. 27. Montes L-R, Ibarguren M, Goñi FM, Stonehouse M, Vasil ML, Alonso A. Leakage- free membrane fusion induced by the hydrolytic activity of PlcHR 2, a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. BBA-Biomembranes. 2007; 1768(10): 2365-2372. 28. Bai J, Pagano RE. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry-US. 1997; 36(29): 8840-8848. 29. Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goñi FM. Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem. 2003; 278(39): 37169-37174. 30. Contreras FX, Basanez G, Alonso A, Herrmann A, Goñi FM. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J. 2005; 88(1): 348-359. 31. Sot J, Ibarguren M, Busto JV, Montes L, Goñi FM, Alonso A. Cholesterol displacement by ceramide in sphingomyelin-containing liquid- ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Lett. 2008; 582(21): 3230-3236. 32. Garcia-Arribas AB, Axpe E, Mujika JI et al. Cholesterol-Ceramide Interactions in Phospholipid and Sphingolipid Bilayers As Observed by Positron Annihilation Lifetime Spectroscopy and Molecular Dynamics Simulations. Langmuir. 2016; 32: 5434-5444. 33. Axpe E, García-Arribas AB, Mujika JI et al. Ceramide increases free volume voids in DPPC membranes. RSC Adv. 2015; 5(55): 44282- 44290. 34. Morad SA, Cabot MC. Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer. 2013; 13(1): 51-65. 35. Flowers M, Fabriás G, Delgado A, Casas J, Abad JL, Cabot MC. C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res Tr .2012; 133(2): 447-458. 36. HannunYA, Obeid LM. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem. 2002; 277(29): 25847-25850. 37. Kolesnick, RN, Goñi FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol. 2000; 184(3): 285-300. 38. Okazaki T, Bell RM, Hannun YA. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 1989; 264(32): 19076-19080. 39. Carrer DC, Maggio B. Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine. J Lipid Res. 1999; 40(11): 1978-1989. 40. Busto JV, Fanani ML, De Tullio L et al. Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers. Biophys J. 2009; 97(10): 2717-2726. 41. Leung SS, Busto JV, Keyvanloo A, Goñi FM. Thewalt J. Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting. Biophys J. 2012; 103(12): 2465-2474. 42. Chiantia S, Kahya N, Ries J, Schwille P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J. 2006; 90(12): 4500-4508. 43. Goñi FM, Alonso A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. BBA-Biomembranes. 2009; 1788(1): 169-177. 44. Siskind LJ, Kolesnick RN. Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 2002; 277(30): 26796- 26803. 45. García-Arribas AB, Busto JV, Alonso A, Goñi FM. Atomic force microscopy characterization of palmitoylceramide and cholesterol effects on phospholipid bilayers: a topographic and nanomechanical study. Langmuir. 2015; 31(10): 3135-3145. 46. López-Montero I, Catapano ER, Espinosa G, Arriaga LR, Langevin D, Monroy F. Shear and compression rheology of Langmuir monolayers of natural ceramides: solid character and plasticity. Langmuir. 2013; 29(22): 6634-6644. 47. Cremesti AE, Goñi FM, Kolesnick R. Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? Febs Lett. 2002; 531(1): 47- 53.

RkJQdWJsaXNoZXIy ODI4MTE=