Anales de la RANM

307 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 POLIFENOLES DE LA DIETA Y ENFERMEDADES CARDIOMETABÓLICAS Jara Pérez Jiménez An RANM · Año 2019 · número 136 (03) · páginas 298 a 307 sis, analytical features, and biological relevance o f 5-(3′,4′-Di hydroxyphenyl)-γ-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols. J Agric Food Chem 2011; 59: 7083-7091. 30. Rodríguez-Mateos A, Feliciano RP, Boeres A et al. Cranberry (poly)phenol metabolites correlate with improvements in vascular function: a dou- ble-blind, randomized, controlled, dose-response, crossover study. Molec Nutr Food Res 2016; 60: 2130-2140. 31. Pérez-Jiménez J, Serrano J, Tabernero M et al. Bio- availability of phenolic antioxidants associated with dietary fiber: plasma antioxidant capacity after acute and long-term intake in humans. Plant Foods Human Nutr 2009; 64: 102-107. 32. Saura-Calixto F, Pérez-Jiménez J, Touriño S et al. Proanthocyanidin metabolites associated with die- tary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molec Nutr Food Res 2010; 54: 939-946. 33. Grabber JH, Ress D, Ralph J. Identifying new lig- nin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls. J Agric Food Chem 2012; 60: 5152-5160. 34. Rubin R. High-fiber diet might protect against ran- ge of conditions. JAMA 2019; 321: 1653-1655. 35. Reynolds A, Mann J, Cummings J et al. Carbohy- drate quality and human health: a series of syste- matic reviews and meta-analyses. Lancet 2019; 393: 434-445. 36. Muñoz-González I, Chamorro S, Pérez-Jiménez J et al. Phenolic metabolites in plasma and thigh meat of chickens supplemented with grape bypro- ducts. J Agric Food Chem 2019; 67: 4463-4471. 37. Molinar-Toribio E, Fuguet E, Ramos-Romero S et al. A high-fat high-sucrose diet affects the long- term metabolic fate of grape proanthocyanidins in rats. Eur J Nutr 2018; 57: 339-349. 38. Ramos-Romero S, Molinar-Toribio E, Gómez L et al. Effect of d-fagomine on excreted enterobacteria and weight gain in rats fed a high-fat high-sucrose diet. Obesity 2014; 22: 976-979. 39. Lizárraga D, Vinardell MP, Noé V. A Lyophilized red grape pomace containing proanthocyanidin- rich dietary fiber induces genetic and metabolic al- terations in colon mucosa of female C57Bl/6J mice. J Nutr 2011; 141: 1597-1604. 40. López-Oliva ME, Pozuelo MJ, Rotger R et al. Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-xL expression and minimising oxidative stress in rat distal colonic mucosa. Br J Nutr 2013; 109: 4-16. 41. Sánchez-Tena S, Lizárraga D, Miranda A et al. Grape antioxidant dietary fiber inhibits intestinal polyposis in ApcMin/+ mice: relation to cell cycle and immune response. Carcinogenesis 2013; 34: 1881-1888. 42. Pérez-Jiménez J, Serrano J, Tabernero M et al. Effects of grape antioxidant dietary fiber on car- diovascular disease risk factors. Nutr 2008; 24: 646-653. 43. Amaya-Cruz D, Pérez-Ramírez I, Pérez-Jiménez J et al. Comparison of the bioactive potential of Ro- selle ( Hibiscus sabdariffa L.) calyx and its by-pro- duct: phenolic characterization by UPLC-QTOF MSE and their anti-obesity effect in vivo . Food Res Int 2019; 126: 108589. 44. 44. Martínez-Maqueda D, Zapatera B, Gallego- Narbón A et al. A 6-weeks supplementation with grape pomace to subjects at cardiometabolic risk ameliorates insulin sensitivity, without affecting other metabolic syndrome markers. Food Funct 2018; 9(11): 6010-6019. 45. 45. Ávila JAD, García JR, Aguilar GAG et al. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and in- sulin signaling. Molecules 2017; 22: 903. 46. 46. Selma MV, González-Sarrías A, Salas-Sal- vadó J et al. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardio- metabolic risk biomarkers: comparison between normoweight, overweight-obesity and metabolic syndrome. Clin Nutr 2018; 37: 897-905. 47. 47. Bansal S, Buring JE, Rifai N et al. Fasting com- pared with nonfasting triglycerides and risk of car- diovascular events in women. JAMA 2007; 298(3): 309-316. 48. 48. Jiang J, Zhao L, Lin L et al. Postprandial blood glucose outweighs fasting blood glucose and HbA1c in screening coronary heart disease. Sci Rep 2017; 7(1): 14212. 49. 49. Törrönen R, Sarkkinen E, Niskanen T et al. Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with ber- ries in healthy subjects. Br J Nutr 2012; 107(10): 1445-1451. 50. 50. Castro-Acosta MI, Smith L, Miller LJ et al. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, in- sulin and incretin concentration. J Nutr Biochem 2016; 38: 154-161. DECLARACIÓN DE TRANSPARENCIA La autora de este artículo es co-inventora de la patente WO 2017013299 A1, destinada a la obtención de ingredientes ricos en polifenoles no extraíbles Si desea citar nuestro artículo: Pérez-Jiménez J. Polifenoles de la dieta y enfermedades cardiometabólicas ANALES RANM [Internet]. Real Academia Nacional de Medicina de España; An RANM · Año 2019 · número 136 (03) · páginas 298– 307 DOI: 10.32440/ar.2019.136.03. rev11

RkJQdWJsaXNoZXIy ODI4MTE=