Anales de la RANM
122 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 VULNERABILIDAD NEURONAL EN ENFERMEDAD DE PARKINSON Natalia López-González, et al. An RANM. 2021;138(02): 114 - 123 17. Kordower JHH, Olanow CWW, Dodiya HBB, et al. Disease duration and the integrity of the ni- grostriatal system in Parkinson’s disease. Brain. 2013; 136(8): 2419-2431. 18. Pfeiffer RF. Non-motor symptoms in Parkinson’s disease. Park Relat Disord. 2016; 22: S119–S122. 19. Joel D, Weiner I. The connections of the dopa- minergic system with the striatum in rats and primates: an analysis 2000with respect to the functional and compartmental organization of the striatum. Neuroscience; 96(3): 451-474. 20. Haber SN, Fudge JL, McFarland NR. Striato- nigrostriatal pathways in primates form an ascending spiral from the shell to the dorso- lateral striatum. J Neurosci. 2000; 20(6): 2369- 2382. 21. Fujiyama F, Sohn J, Nakano T, et al. Exclu- sive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci. 2011; 33(4): 668-677. 22. Menegas W, Bergan JF, Ogawa SK, et al. Dopa- mine neurons projecting to the posterior stria- tum form an anatomically distinct subclass. eLife. 2015; 4: e10032. 23. Rommelfanger KS, Wichmann T. Extrastriatal dopaminergic circuits of the Basal Ganglia. Front Neuroanat. 2010; 4: 139. 24. Crittenden JR, Tillberg PW, Riad MH, et al. Striosome-dendron bouquets highlight a uni- que striatonigral circuit targeting dopamine- containing neurons. Proc Natl Acad Sci USA. 2016; 113(40): 11318-11323. 25. Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends in Neurosciences. 2007; 30: 194-202. 26. Brichta L, Greengard P. Molecular determi- nants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neu- roanat. 2014; 8: 152. 27. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. Stereological estimates of dopaminergic, GA- BAergic and glutamatergic neurons in the ven- tral tegmental area, substantia nigra and re- trorubral field in the rat. Neuroscience. 2008; 152(4): 1024-1031. 28. Bentivoglio M, Morelli M. Chapter I, The or- ganization and circuits of mesencephalic do- paminergic neurons and the distribution of dopamine receptors in the brain. Handb Chem Neuroanat. 2005; 21: 1-107. 29. Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially sus- ceptible to degeneration in Parkinson’s disease. Nature. 1988; 334(6180): 345-348. 30. Braak H, Rüb U, Gai WP, Del Tredici K. Idio- pathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be sub- ject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003; 110(5): 517-536. 31. Halliday GM, McRitchie DA, Cartwright H, Pamphlett R, Hely MA, Morris JGL. Midbrain neuropathology in idiopathic Parkinson’s disea- se and diffuse Lewy body disease. J Clin Neu- rosci. 1996; 3(1): 52-60. 32. Fearnley JMM, Lees AJJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991; 114 ( Pt 5): 2283-2301. 33. German DC, Manaye K, Smith WK, Wood- ward DJ, Saper CB. Midbrain dopaminergic cell loss in parkinson’s disease: computer vi- sualization. Ann Neurol. 1989; 26(4): 507-514. 34. Gibb WR, Lees AJ. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosur Ps. 1991; 54(5): 388-396. 35. Martín-Bastida A, Lao-Kaim NP, Roussa- kis AA, et al. Relationship between neuro- melanin and dopamine terminals within the Parkinson’s nigrostriatal system. Brain. 2019; 142(7): 2023-2036. 36. Giguère N, Burke Nanni S, Trudeau L-E. On cell loss and selective vulnerability of neuro- nal populations in Parkinson’s disease. Front Neurol. 2018; 9: 455. 37. Dopeso-Reyes IG, Rico AJ, Roda E, et al. Cal- bindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat. 2014; 8: 146. 38. Inoue K-I, Miyachi S, Nishi K, et al. Re- cruitment of calbindin into nigral dopami- ne neurons protects against MPTP-Induced parkinsonism. Mov Disord. 2019; 34(2): 200- 209. 39. Takada M, Tokuno H, Nambu A, Inase M. Corticostriatal projections from the somatic motor areas of the frontal cortex in the ma- caque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the pre- motor cortex. Exp Brain Res. 1998; 120(1): 114-128. 40. Brodsky M, Lahna D, Pollock J, Pettersson D, Grinstead J, Rooney W. Nigrosome 1 absen- ce in de novo Parkinson disease. Neurology. 2018; 90(11): 522-552. 41. Poulin J-F, Gaertner Z, Moreno-Ramos OA, Awatramani R. Classification of midbrain do- pamine neurons using single-cell gene expres- sion profiling approaches. Trends Neurosci. 2020; 43(3): 155-169. 42. La Manno G, Gyllborg D, Codeluppi S, et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell. 2016; 167(2): 566-580. 43. Poulin J-F, Caronia G, Hofer C, et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 2018; 21(9): 1260- 1271. 44. Sgobio C, Wu J, Zheng W, et al. Aldehyde dehydrogenase 1-positive nigrostriatal do- paminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Sci Rep. 2017; 7(1): e5283. 45. Wu J, Kung J, Dong J, et al. Distinct connecti- vity and functionality of aldehyde dehydroge- nase 1a1-positive nigrostriatal dopaminergic neurons in motor learning. Cell Rep. 2019; 28(5): 1167-1181.
RkJQdWJsaXNoZXIy ODI4MTE=