Anales de la RANM

65 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 SERUM MYELOPEROXIDASE AND PARKINSON´S DISEASE Fernández-Espejo E An RANM. 2022;139(01): 56 - 66 The author is most grateful to all subjects who participated in this study. The authors thank Mara Guerra and Silvia Castellano (Univer- sidad de Sevilla), and Ana Luisa Gavito (Instituto de Biomedicina de Málaga) for their technical assistance; Fernando Rodríguez de Fonseca (Instituto de Biomedicina de Málaga, Universidad Complutense de Madrid) for his unvaluable experi- mental help; Angel Rico, Guillermo Izquierdo, and Eva Cuartero for allowing the use of the facili- ties of Hospital Macarena and Valme; José-Manuel Garcia-Moreno, Ángel Martín de Pablos, and Fátima Damas-Hermoso (Servicios de Neurología y Cirugía, Hospital Macarena and Valme, Sevilla) for their excellent clinical work and biofluids collec- tion; Cinta Calvo-Morón (Servicio de Medicina Nuclear, Hospital Macarena) and Ana Santurtún (Universidad de Cantabria) for DAT-SPECT studies, and Maria-Isabel Garcia-Sánchez and the Biobanco Hospitalario Macarena (National Biobank Network, Instituto de Salud Carlos III, Madrid) for her work with the storage of samples. This work was supported by grants from Sociedad Andaluza de Neurología (ref. SUBAIA2015/006), and RETICS Red de Trastornos Adictivos, Instituto de Salud Carlos III (RD06/001/002, RD16/0017/0001). The funding sources had no further role in study design; in the collection, analysis, and interpretation of data; in writing of the report; and in the decision to submit the paper. 1. Galzigna L, De Iuliis A, Zanatta L. Enzymatic do- pamine peroxidation in substantia nigra of hu- man brain. Clin Chim Acta. 2000; 300: 131-138. https://doi.org/10.1016/S0009-8981(00)00313-2 2. De Iuliis A, Burlina AP, Boschetto R, Zambe- nedetti P, Arslan P, Galzigna L. Increased do- pamine peroxidation in postmortem Parkin- sonian brain. Biochim Biophys Acta. 2002; 1573(1): 63-67. https://doi.org/10.1016/S0304- 4165(02)00331-8 3. Yap YW, Whiteman M, Cheung NS. Chlorinative stress: an under-appreciated mediator of neuro- degeneration? Cell Signal. 2007; 19(2): 219-228. https://doi.org/10.1016/j.cellsig.2006.06.013 4. Ray RS, Katyal A. Myeloperoxidase: Brid- ging the gap in neurodegeneration. Neurosci Biobehav Rev. 2016; 68: 611-620. https://doi. org/10.1016/j.neubiorev.2016.06.031 5. Vlasova II. Peroxidase activity of human he- moproteins: Keeping the fire under control. Molecules. 2018; 23(10): 2561. https://doi. org/10.3390/molecules23102561 6. Jeitner TM, Kalogiannis M, Krasnikov BF, Gomlin I, Peltier MR, Moran GR. Linking inflammation and Parkinson disease: Hypochlorous acid ge- nerates Parkinsonian poisons. Toxicol Sci. 2016; 151(2): 388-402. https://doi.org/10.1093/toxsci/ kfw052 7. Maki RA, Holzer M, Motamedchaboki K et al. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson's di- sease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment. Free Radic Biol Med. 2019; 141: 115-140. https://doi.org/10.1016/j.freerad- biomed.2019.05.033 8. Choi DK, Pennathur S, Perier C et al. Ablation of the inflammatory enzyme myeloperoxidase mi- tigates features of Parkinson's disease in mice. J Neurosci. 2005; 25(28): 6594-6600. https://doi. org/10.1523/JNEUROSCI.0970-05.2005 9. Soubhye J, Aldib I, Delporte C, Prévost M, Dufras- ne F, Antwerpen PV. Myeloperoxidase as a target for the treatment of inflammatory syndromes: Mechanisms and structure activity relationships of inhibitors. Curr Med Chem. 2016; 23(35): 3975- 4008. DOI: 10.2174/0929867323666160607111806 10. Gellhaar S, Sunnemark D, Eriksson H, Olson L, Galter D. Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson's and Alzheimer's disease. Cell Tissue Res. 2017; 369(3): 445-454. https://doi.org/10.1007/s00441- 017-2626-8 11. Breckwoldt MO, Chen JW, Stangenberg L et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci USA. 2008; 105(47): 18584- 18589. https://doi.org/10.1073/pnas.0803945105 12. Dunforb HB. Myeloperoxidase and eosinophil pe- roxidase: Phagocytosis and microbial killing. En: Dunforb HB, ed. Heme Peroxidases. New York: Wiley; 1999, p. 349-385. 13. Arnhold J, Flemmig J. Human myeloperoxida- se in innate and acquired immunity. Arch Bio- chem Biophys. 2010; 500(1): 92-106. https://doi. org/10.1016/j.abb.2010.04.008 14. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013; 93(2): 185-198. https://doi. org/10.1189/jlb.0712349 15. Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol. 2003; 53(Suppl 3): S26-S38. https:// doi.org/10.1002/ana.10483 16. Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron. 2016; 90(4): 675-691. https://doi. org/10.1016/j.neuron.2016.03.038 17. Navarro-Yepes J, Burns M, Anandhan A et al. Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxid Redox Sig- nal. 2014 ; 21(1): 66-85. https://doi.org/10.1089/ ars.2014.5837 18. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: Oxidants, myelopero- xidase, and bacterial killing. Blood. 1998; 92(9): 3007-3017. PMID: 9787133 ACKNOWLEDGEMENTS FUNDING BIBLIOGRAPHY

RkJQdWJsaXNoZXIy ODI4MTE=