Anales de la RANM

66 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 SERUM MYELOPEROXIDASE AND PARKINSON´S DISEASE Fernández-Espejo E An RANM. 2022;139(01): 56 - 66 19. Pullar JM, Winterbourn CC, Vissers MC. Loss of GSH and thiol enzymes in endothe- lial cells exposed to sublethal concentrations of hypochlorous acid. Am J Physiol. 1999; 277(4): H1505-1512. https://doi.org/10.1152/ ajpheart.1999.277.4.H1505 20. Bafort F, Parisi O, Perraudin JP, Jijakli MH. Mode of action of lactoperoxidase as rela- ted to its antimicrobial activity: a review. Enzyme Res. 2014; ID 517164. https://doi. org/10.1155/2014/517164 21. Jeitner TM, Kalogiannis M, Patrick PA et al. Inflaming the diseased brain: a role for tain- ted melanins. Biochim Biophys Acta. 2015; 1852(5): 937-950. https://doi.org/10.1016/j.bba- dis.2015.01.004 22. Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: a target for new drug develo- pment? Br J Pharmacol. 2007; 152(6): 838-854. https://doi.org/10.1038/sj.bjp.0707358 23. Jucaite A, Svenningsson P, Rinne JO et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson's disease. Brain. 2015; 138(9): 2687-26700. https://doi. org/10.1093/brain/awv184 24. Kang UJ, Goldman JG, Alcalay RN et al. The BioFIND study: Characteristics of a clinically typical Parkinson's disease biomarker cohort. Mov. Disord. 2016; 31(6): 924-932. https://doi. org/10.1002/mds.26613 25. Iranzo A, Santamaría J, Valldeoriola F et al. Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder. Ann. Neurol. 2017; 82(3): 419-428. https://doi. org/10.1002/ana.25026 26. Chahine LM, Iranzo A, Fernández-Arcos A et al; PPMI Sleep Working Group. Basic clinical featu- res do not predict dopamine transporter binding in idiopathic REM behavior disorder. NPJ Par- kinsons Dis. 2019; 5:2. https://doi.org/10.1038/ s41531-018-0073-1 27. Verber D, Novak D, Borovič M, Dugonik J, Flisar D. EQUIDopa: a responsive web application for the levodopa equivalent dose calculator. Comput. Methods Programs Biomed. 2020; 196: 105633. https://doi.org/10.1016/j.cmpb.2020.105633 28. Hernán MA, Takkouche B, Caamaño-Isorna F, Gestal-Otero JJ. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Ann Neurol. 2002; 52(3): 276-284. https://doi.org/10.1002/ana.10277 29. Ragonese P, Salemi G, Morgante L et al. A ca- se-control study on cigarette, alcohol, and co- ffee consumption preceding Parkinson's disea- se. Neuroepidemiology. 2003; 22(5): 297-304. https://doi.org/10.1159/000071193 30. Staffen W, Mair A, Unterrainer J, Trinka E, La- durner G. Measuring the progression of idio- pathic Parkinson's disease with [123I] beta-CIT SPECT. J Neural Transm. 2000; 107: 543-552. https://doi.org/10.1007/s007020070077 31. Marek K, Innis R, van Dyck C, Fussell B et al. [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson's disease progression. Neurology 2001; 57(11): 2089-2094. https://doi. org/10.1212/WNL.57.11.2089 32. Nobili F, Naseri M, De Carli F et al. Automatic semi-quantification of [123I]FP-CIT SPECT scans in healthy volunteers using BasGan version 2: re- sults from the ENC-DAT database. Eur J Nucl Med Mol Imaging. 2013; 40(4): 565-573. https://doi. org/10.1007/s00259-012-2304-8 33. Varrone A, Dickson JC, Tossici-Bolt L et al. Euro- pean multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of diffe- rent methods of analysis. Eur J Nucl Med Mol Ima- ging. 2013; 40(2): 213-227. https://doi.org/10.1007/ s00259-012-2276-8 34. Simuni T, Uribe L, Cho HR et al; PPMI Investiga- tors. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurol. 2020; 19(1): 71-80. doi: 10.1016/ S1474-4422(19)30319-9. https://doi.org/10.1016/ S1474-4422(19)30319-9 35. Weston RM, Jones NM, Jarrott B, Callaway JK. Inflammatory cell infiltration after endothelin- 1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal chan- ges in brain injury. J Cereb Blood Flow Metab. 2007; 27(1): 100-114. https://doi.org/10.1038/ sj.jcbfm.9600324 36. Zheng GR, Chen B, Shen J et al. Serum myelope- roxidase concentrations for outcome prediction in acute intracerebral hemorrhage. Clin Chim Acta. 2018; 487: 330-336. https://doi.org/10.1016/j. cca.2018.10.026 37. Dohi K, Ohtaki H, Nakamachi T et al. Gp91phox (NOX2) in classically activated microglia exacer- bates traumatic brain injury. J Neuroinflammation. 2010; 7: 41. https://doi.org/10.1186/1742-2094-7-41 38. Mastaglia FL, Johnsen RD, Kakulas BA. Prevalence of stroke in Parkinson's disease: a postmortem stu- dy. Mov Disord. 2002; 17(4): 772-774. https://doi. org/10.1002/mds.10199 39. Alves M, Caldeira D, Ferro JM, Ferreira JJ. Does Parkinson's disease increase the risk of cardiovas- cular events?: a systematic review and meta-analy- sis. Eur J Neurol. 2020; 27(2): 288-296. https://doi. org/10.1111/ene.14076 40. Buonacera A, Stancanelli B, Malatino L. Stroke and Hypertension: An Appraisal from Pathophysiology to Clinical Practice. Curr Vasc Pharmacol. 2019; 17(1): 72-84. https://dx.doi.org/10.2174/15701611 15666171116151051 CONFLICT OF INTEREST STATEMENT The author of this article declare that he has no conflict of interest with respect to what is expressed in this work. If you want to quote our article: Fernández Espejo E. Enhanced serum myeloperoxidase level correlates with clinical features of Parkinson´s disease. An RANM. 2022;139(01): 56– 66. DOI: 10.32440/ar.2022.139.01. org01

RkJQdWJsaXNoZXIy ODI4MTE=