Anales de la RANM

86 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 AMYOTROPHIC LATERAL SCLEROSIS IS NOT ONLY A MOTOR NEURON DISEASE Fernández A, et al. An RANM. 2022;139(01): 78 - 87 16. Ruffoli R, Biagioni F, Busceti CL et al. Neurons other than motor neurons in motor neuron di- sease. Histol Histopathol. 2017; 32(11): 1115- 1123. 17. Pansarasa O, Rossi D, Berardinelli A, Cereda C. Amyotrophic lateral sclerosis and skeletal muscle: an update. Mol Neurobiol. 2014; 49(2): 984-990. 18. Lino MM, Schneider C, Caroni P. Accumula- tion of SOD1 mutants in postnatal motoneu- rons does not cause motoneuron pathology or motoneuron disease. J Neurosci. 2002; 22(12): 4825-4832. 19. Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes re- sults in astrocytosis but does not cause moto- neuron degeneration. J Neurosci. 2000; 20(2): 660-665. 20. Van Es MA, Goedee HS, Westeneng HJ, Nijboer TCW, van den Berg LH. Is it accurate to classify ALS as a neuromuscular disorder? Expert Rev Neurother. 2020; 20(9): 895-906. 21. Fischer LR, Culver DG, Tennant P et al. Amyo- trophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004; 185(2): 232-240. 22. Eisen A, Weber M. The motor cortex and am- yotrophic lateral sclerosis. Muscle Nerve. 2001; 24(4): 564-573. 23. Tsitkanou S, Della Gatta PA, Russell AP. Skele- tal muscle satellite cells, mitochondria, and mi- crornas: their involvement in the pathogenesis of ALS. Front Physiol. 2016; 7: 403. 24. De Diego AMG, García AG. Altered exocyto- sis in chromaffin cells from mouse models of neurodegenerative diseases. Acta Physiol (Oxf ). 2018; 224(2): e13090. 25. Chida K, Sakamaki S, Takasu T. Alteration in autonomic function and cardiovascular regula- tion in amyotrophic lateral sclerosis. J Neurol. 1989; 236(3): 127-130. 26. Baltadzhieva R, Gurevich T, Korczyn AD. Auto- nomic impairment in amyotrophic lateral scle- rosis. Curr Opin Neurol. 2005; 18(5): 487-493. 27. Kandinov B, Korczyn AD, Rabinowitz R, Ne- fussy B, Drory VE. Autonomic impairment in a transgenic mouse model of amyotrophic lateral sclerosis. Auton Neurosci. 2011; 159(1-2): 84- 89. 28. Ziegler MG, Brooks BR, Lake CR, Wood JH, Enna SJ. Norepinephrine and gamma-aminobu- tyric acid in amyotrophic lateral sclerosis. Neu- rology. 1980; 30(1): 98-101. 29. Kandinov B, Grigoriadis NC, Touloumi O et al. Immunohistochemical analysis of sympathe- tic involvement in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Dege- ner. 2013; 14(5-6): 424-433. 30. Sachs C, Conradi S, Kaijser L. Autonomic function in amyotrophic lateral sclerosis: a stu- dy of cardiovascular responses. Acta Neurol Scand. 1985; 71(5): 373-378. 31. Marin B, Desport JC, Kajeu P et al. Alteration of nutritional status at diagnosis is a prognos- tic factor for survival of amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychia- try. 2011; 82(6): 628-634. 32. González de Aguilar JL, Gordon JW, Rene F et al. A mouse model of familial amyotrophic lateral sclerosis expressing a mutant superoxi- de dismutase 1 shows evidence of disordered transport in the vasopressin hypothalamo- neurohypophysial axis. Eur J Neurosci. 1999; 11(12): 4179-4187. 33. De Diego AM, Lorrio S, Calvo-Gallardo E, García AG. Smaller quantal size and faster kinetics of single exocytotic events in chro- maffin cells from the APP/PS1 mouse model of Alzheimer's disease. Biochem Biophys Res Commun. 2012; 428(4): 482-486. 34. Mackenzie KD, Duffield MD, Peiris H et al. Huntingtin-associated protein 1 regulates exocytosis, vesicle docking, readily releasable pool size and fusion pore stability in mouse chromaffin cells. J Physiol. 2014; 592(7): 1505- 1518. 35. Calvo-Gallardo E, Pascual R de , Fernández- Morales JC et al. Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1(G93A) mouse model of amyotrophic lateral sclero- sis. Am J Physiol Cell Physiol. 2015; 308(1): C1-19. 36. Martínez-Ramírez C, Baraibar AM, Nanclares C et al. Altered excitability and exocytosis in chromaffin cells from the R6/1 mouse model of Huntington's disease is linked to overex- pression of mutated huntingtin. J Neurochem. 2018; 147(4): 454-476. 37. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp tech- niques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981; 391(2): 85-100. 38. Wightman RM, Jankowski JA, Kennedy RT et al. Temporally resolved catecholamine spikes correspond to single vesicle release from in- dividual chromaffin cells. Proc Natl Acad Sci U S A. 1991; 88(23): 10754-10758. 39. Hirano A, Donnenfeld H, Sasaki S, Nakano I. Fine structural observations of neurofilamen- tous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1984; 43(5): 461-470. 40. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000; 529(Pt1): 57-68. 41. Martin LJ. Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2006; 65(12): 1103- 1110. 42. Montero M, Alonso MT, Carnicero E et al. Chromaffin-cell stimulation triggers fast mil- limolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol. 2000; 2(2): 57- 61. 43. Méndez-López I, Sancho-Bielsa FJ, Engel T, García AG, Padín JF. Progressive mitochon- drial sod1(g93a) accumulation causes severe structural, metabolic and functional aber- rations through opa1 down-regulation in a mouse model of amyotrophic lateral sclero- sis. Int J Mol Sci. 2021; 22(15): 8194

RkJQdWJsaXNoZXIy ODI4MTE=