Anales de la RANM

228 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 ADIPOKINES, AGEING, AND VASCULAR DAMAGE Sánchez Ferrer CF, et al. An RANM. 2022;139(03): 223 - 228 426-430. doi: 10.1126/science.1097243. 2. Romacho T, Azcutia V, Vázquez-Bella M et al. Extracellular PBEF/NAMPT/visfatin activates pro-inflammatory signalling in human vascu- lar smooth muscle cells through nicotinamide phosphoribosyltransferase activity. Diabetologia. 2009; 52(11): 2455-2463. doi: 10.1007/s00125- 009-1509-2. 3. Vallejo S, Romacho T, Angulo J et al. Visfatin impairs endothelium-dependent relaxation in rat and human mesenteric microvessels through nicotinamide phosphoribosyltransferase activity. PLoS One. 2011; 6(11): e27299. doi: 10.1371/jour- nal.pone.0027299. 4. Villalobos LA, Uryga A, Romacho T et al. Vis- fatin/Nampt induces telomere damage and senescence in human endothelial cells. Int J Cardiol. 2014; 175(3): 573-575. doi: 10.1016 /j.ij - card.2014.05.028. 5. Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role 6. of the NLRP3 inflammasome on obesity and in- sulin resistance: a systematic review. Metabolism. 2017; 74: 1-9. doi: 10.1016/j.metabol.2017.06.002 7. Romacho T, Valencia I, Ramos-González M et al. Visfatin/eNampt induces endothelial dysfunction in vivo: a role for Toll-Like Receptor 4 and NLRP3 inflammasome. Sci Rep. 2020; 10(1): 5386. doi: 10.1038/s41598-020-62190-w. 8. Lamers D, Famulla S, Wronkowitz N et al. Dipep- tidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome.. Dia- betes. 2011; 60(7): 1917-1925. doi: 10.2337/db10- 1707. 9. Sell H, Blüher M, Klöting N et al. Adipose dipep- tidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013; 36(12): 4083-4090. doi: 10.2337/dc13-0496. 10. Wronkowitz N, Görgens SW, Romacho T et al. Soluble DPP4 induces inflammation and proli- feration of human smooth muscle cells via pro- tease-activated receptor 2. Biochim Biophys Acta. 2014; 1842(9): 1613-1621. doi: 10.1016/j.bba- dis.2014.06.004. 11. Romacho T, Vallejo S, Villalobos LA et al. Solu- ble dipeptidyl peptidase-4 induces microvascular endothelial dysfunction through proteinase-ac- tivated receptor-2 and thromboxane A2 release. J Hypertens. 2016; 34(5): 869-876. doi: 10.1097/ HJH.0000000000000886. 12. Valencia I, Vallejo S, Dongil P et al. DPP4 pro- motes human endothelial cell senescence and dysfunction via the PAR2-COX-2-TP axis and NLRP3 inflammasome activation. Hypertension. 2022; 79(7): 1361-1373. doi: 10.1161/HYPER- TENSIONAHA.121.18477. 13. Larsen CM, Faulenbach M, Vaag A et al. Inter- leukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007. 12; 356(15): 1517- 1526. doi: 10.1056/NEJMoa065213. 14. Vallejo S, Palacios E, Romacho T, Villalobos L, Peiró C, Sánchez-Ferrer CF. The interleukin-1 receptor antagonist anakinra improves endothe- lial dysfunction in streptozotocin-induced diabe- tic rats. Cardiovasc Diabetol. 2014. 18; 13: 158. doi: 10.1186/s12933-014-0158-z. 15. Ridker PM, Everett BM, Thuren T et al; CANTOS Trial Group. Antiinflammatory therapy with ca- nakinumab for atherosclerotic disease. N Engl J Med. 2017. 21; 377(12): 1119-1131. doi: 10.1056/ NEJMoa1707914. 16. Rothman AM, MacFadyen J, Thuren T et al. Effects of interleukin-1β inhibition on blood pressure, incident hypertension, and residual in- flammatory risk: a secondary analysis of CAN- TOS. Hypertension. 2020; 75(2): 477-482. doi: 10.1161/HYPERTENSIONAHA.119.13642. 17. Santos RA. Angiotensin-(1-7). Hypertension. 2014; 63(6): 1138-1147. doi: 10.1161/HYPER- TENSIONAHA.113.01274. 18. Peiró C, Vallejo S, Gembardt F. Endothelial dys- function through genetic deletion or inhibition of the G protein-coupled receptor Mas: a new target to improve endothelial function. J Hy- pertens. 2007; 25(12): 2421-2425. doi: 10.1097/ HJH.0b013e3282f0143c. 19. Peiró C, Vallejo S, Gembardt F et al. Complete blockade of the vasorelaxant effects of angioten- sin-(1-7) and bradykinin in murine microvessels by antagonists of the receptor Mas. J Physiol. 2013. 1; 591(9): 2275-2285. doi: 10.1113/jphy- siol.2013.251413. 20. Villalobos LA, San Hipólito-Luengo Á, Ramos- González M et al. The Angiotensin-(1-7)/Mas axis counteracts angiotensin ii-dependent and -inde- pendent pro-inflammatory signaling in human vascular smooth muscle cells. Front Pharmacol. 2016. 15; 7: 482. doi: 10.3389/fphar.2016.00482. 21. Romero A, Dongil P, Valencia I et al. Pharma- cological blockade of NLRP3 inflammasome/IL- 1β-positive loop mitigates endothelial cell senes- cence and dysfunction. Aging Dis. 2022. 1; 13(1): 284-297. doi: 10.14336/AD.2021.0617. 22. Takahashi Y, Kuro-O M, Ishikawa F. Aging mecha- nisms. Proc Natl Acad Sci U S A. 2000. 7; 97(23): 12407-12408. doi: 10.1073/pnas.210382097. 23. Romero A, San Hipólito-Luengo A, Villalobos L et al. The angiotensin-(1-7)/Mas receptor axis pro- tects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell. 2019. e12913. doi: 10.1111/acel.12913. 24. Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario C.M. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci USA. 1988; 85(11): 4095-4098. doi: 10.1073/ pnas.85.11.4095. Si desea citar nuestro artículo: Sánchez Ferrer CF, Valencia Fernández I, Peiró Vallejo C. Adipoquinas, envejecimiento y daño vascular. An RANM. 2022;139(03): 223– 228. DOI: 10.32440/ar.2022.139.03. rev01

RkJQdWJsaXNoZXIy ODI4MTE=