Anales de la RANM

235 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 DESARROLLO Y FUNCIÓN DE LOS CIRCUITOS BILATERALES Moreno Bravo JA An RANM. 2022;139(03): 229 - 235 20. Yamauchi K, Yamazaki M, Abe M et al. Netrin-1 derived from the ventricular zone, but not the floor plate, directs hindbrain commissural axons to the ventral midline. Sci Rep. 2017; 7(1): 11992. 21. Moreno-Bravo JA, Puiggros SR, Mehlen P, Ché- dotal A. Synergistic activity of floor plateand ventricular-zone-derived netrin-1 in spinal cord commissural axon guidance. Neuron. 2019; 101(4): 625-634. 22. Wu Z, Makihara S, Yam PT et al. Long-range gui- dance of spinal commissural axons by Netrin1 and sonic hedgehog from midline floor plate cells. Neuron. 2019; 101(4): 635-647. 23. Izzi L, Charron F. Midline axon guidance and human genetic disorders. Clin Genet; 80(3): 226-234. 24. Schmahmann JD. Emotional disorders and the cerebellum: Neurobiological substrates, neurop- sychiatry, and therapeutic implications. Handb Clin Neurol. 2021; 183: 109-154. 25. Moberget T, Doan NT, Alnæs D et al. Cerebellar volume and cerebellocerebral structural cova- riance in schizophrenia: a multisite mega-analy- sis of 983 patients and 1349 healthy controls. Mol Psychiatry. 2018; 23(6): 1512-1520. 26. Shinn AK, Roh YS, Ravichandran CT, Baker JT, Öngür D, Cohen BM. Aberrant cerebellar con- nectivity in bipolar disorder with psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2(5): 438-448. 27. Depping MS, Schmitgen MM, Kubera KM, Wolf RC. Cerebellar contributions to major depres- sion. Front Psychiatry. 2018; 9: 634. 28. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods and autism. 2015; 83(3): 518- 532. 29. Badura A, Verpeut JL, Metzger JW et al. Normal cognitive and social development require poste- rior cerebellar activity. ELife. 2018; 7: e36401. 30. Carta I, Chen CH, Schott AL, Dorizan S, Kho- dakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019; 363(6424): eaav0581. 31. Gao Z, Davis C, Thomas AM et al. A cortico-ce- rebellar loop for motor planning. Nature. 2018; 563(7729): 113-116. 32. Tsai PT, Hull C, Chu Y et al. Autistic-like beha- viour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012; 488(7413): 647- 651. 33. Mapelli L, Soda T, D’Angelo E, Prestori F. The cerebellar involvement in autism spectrum di- sorders: From the social brain to mouse models. Int J Mol Sci. 2022; 23(7): 3894. 34. Kelly E, Meng F, Fujita H et al. Regulation of au- tism-relevant behaviors by cerebellarprefrontal cortical circuits. Nat Neurosci. 2020; 23: 1102- 1110. 35. Peter S, Brinke MMT, Stedehouder J et al. Dys- functional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat Commun. 2016; 7: 12627. 36. Cupolillo D, Hoxha E, Faralli A et al. Autistic- like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice. Neuropsychophar- macol. 2016; 41(6): 1457- 1466. 37. Stoodley CJ, D’Mello AM, Ellegood J et al. Alte- red cerebellar connectivity in autism and cerebe- llar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017; 20(12): 1744-1751. 38. Bolduc ME, Limperopoulos C. Neurodevelo- pmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009; 51(4): 256-267. 39. Messerschmidt A, Fuiko R, Prayer D et al. Dis- rupted cerebellar development in preterm in- fants is associated with impaired neurodevelo- pmental outcome. Eur J Pediatr. 2008; 167(10): 1141-1147. 40. Rakic P, Sidman RL. Histogenesis of cortical la- yers in human cerebellum, particularly the lami- na dissecans. J Comp Neurol. 1970;139(4): 473- 500. 41. Altman J, Bayer SA. Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol. 1978; 179(1): 23-48. 42. Spoto G, Amore G, Vetri L, et al. Cerebellum and prematurity: a complex interplay between dis- ruptive and dysmaturational events. Front Syst Neurosci. 2021; 15: 655164. 43. Stoodley CJ. The cerebellum and neurodevelop- mental disorders. Cerebellum. 2016; 15(1): 34- 37. 44. Hortensius LM, Dijkshoorn ABC, Ecury-Goos- sen GM, et al. Neurodevelopmental consequen- ces of preterm isolated cerebellar hemorrhage: a systematic review. Pediatrics. 2018; 142(5): e20180609. 45. Volpe JJ. Cerebellum of the premature infant: Rapidly developing, vulnerable, clinically im- portant. J Child Neurol. 2009; 24(9): 1085-1104. 46. Limperopoulos C, Soul JS, Haidar H et al. Impai- red trophic interactions between the cerebellum and the cerebrum among preterm infants. Pedia- trics. 2005; 116(4): 844- 850. 47. Limperopoulos C, Chilingaryan G, Guizard N et al. Cerebellar injury in the premature infant is associated with impaired growth of specific cere- bral regions. Pediatr Res. 2010; 68: 145-150. 48. Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, Plessis AJD. Injury to the premature cerebellum: Outcome is related to remote cortical development. Cereb Cortex. 2014; 24(3): 728-736. 49. Friocourt F, Kozulin P, Belle M et al. Shared and differential features of Robo3 expression pat- tern in amniotes. J Comp Neurol. 2019; 527(12): 2009-2029 Si desea citar nuestro artículo: Moreno Bravo JA. Desarrollo de los circuitos bilaterales del sis- tema nervioso: desde los mecanismos moleculares al cerebelo y su implicación en trastornos del neurodesarrollo. An RANM. 2022;139(03): 229– 235. DOI: 10.32440/ar.2022.139.03 . rev02

RkJQdWJsaXNoZXIy ODI4MTE=