Anales de la RANM

47 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 ENVEJECIMIENTO NEURONAL Ávila J An RANM. 2023;140(01):43 - 48 2. Levayer R, Moreno E. Mechanisms of cell com- petition: Themes and variations. J Cell Biol. 2013; 200: 689-698. 3. Liu N, Matsumura H, Kato T. Stem cell compe- tition orchestrates skin homeostasis and ageing. Nature. 2019; 568: 344-350. 4. Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW. Effect of aging on stem cells. World J Exp Med. 2017; 7: 1-10. 5. Rao MS, Mattson MP. Stem cells and aging: Expanding the possibilities. Mech Ageing Dev. 2001; 122: 713-734. 6. López-Otin C, Blasco MA, Partridge L, Serra- no M, Kroemer G. The hallmarks of aging. Cell. 2013; 153: 194-217. 7. Delgado Pulido S, Escrig-Larena J, Mittelbrunn M. T cell senescence: a novel therapeutic target for aging. An RANM. 2022; 139: 150-155. 8. Villeponteau B. The heterochromatin loss mo- del of aging. Exp Gerontol. 1997; 32: 383-394. 9. Arancio W, Coronnello C. Repetitive sequences in aging. Aging. 2021; 13: 10816-10817. 10. Cordaux R, Batzer MA. The impact of retro- transposons on human genome evolution. Nat Rev Genet. 2009; 10: 691-703. 11. Sultana T, van Essen D, Siol O. The landscape of L1 retrotransposons in the human genome is sha- ped by pre-insertion sequence biases and post-in- sertion selection. Mol Cell. 2019; 74: 555-570 e7. 12. Sturm A, Perczel A, Ivics Z, Vellai T. The Piwi- piRNA pathway: Road to immortality. Aging Cell. 2017; 16: 906-911. 13. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018; 19: 371-384. 14. Noroozi R, Ghafouri-Fard S, Pisarek A. DNA methylation-based age clocks: From age predic- tion to age reversion. Ageing Res Rev. 2021; 68: 101314. 15. Takahashi K, Yamanaka S. Induction of pluri- potent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-676. 16. Ocampo A, Reddy P, Martínez-Redondo P et al. In vivo amelioration of age-associated hall- marks by partial reprogramming. Cell. 2016; 167: 1719-1733 e12. 17. Park JH, Kotani T, Konno T et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: Role of short-chain fatty acids. PLoS One. 2016; 11: e0156334. 18. Magrassi L, Leto K, Rossi, F. Lifespan of neu- rons is uncoupled from organismal lifespan. Proc Natl Acad Sci USA. 2013; 110: 4374-4379. 19. Moreno-Jiménez EP, Flor-García M, Terreros- Roncal J et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med. 2019; 25: 554-560. 20. Nurk S, Koren S, Rhie A et al. The complete se- quence of a human genome. Science. 2022; 376: 44-53. 21. Ciobanu LG, Sachdev P, Trollor JN. Differential gene expression in brain and peripheral tissues in depression across the life span: a review of replicated findings. Neurosci Biobehav Rev. 2016; 71: 281-293. 22. Ribot A. Diseases of the memory: an essay in the positive psychology. New York: Appleton; 1882. 23. Douaud G, Groves AR, Tamnes CK. A com- mon brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci USA. 2014; 111: 17648-17653. 24. Hainmueller T, Bartos M. Dentate gyrus cir- cuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci. 2020; 21: 153-168. 25. Rodríguez-Matellán A, Alcázar N, Hernández F, Serrano M, Ávila J. In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Re- ports. 2020; 15: 1056-1066. 26. Weingarten MD, Lockwood AH, Hwo SY, Kirs- chner MW. A protein factor essential for micro- tubule assembly. Proc Natl Acad Sci USA. 1975; 72: 1858-1862. 27. Ávila J, Lucas JJ, Pérez M, Hernández F. Role of Tau protein in both physiological and patholo- gical conditions. Physiol Rev. 2004; 84: 361-384. 28. Hernández F, Ávila J. Tauopathies. Cell Mol Life Sci. 2007; 64: 2219-2233. 29. Sato C, Barthelemy NR. Mawuenyega KG. Tau kinetics in neurons and the human central ner- vous system. Neuron. 2018; 97: 1284-1298 e7. 30. Ávila J. Tau phosphorylation and aggregation in Alzheimer's disease pathology. FEBS Lett. 2006; 580: 2922-2927. 31. García-Escudero V, Ruiz-Gabarre D, Gargini R et al. A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease. Acta Neuropathol. 2021; 142: 159-177. 32. Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Ávila J. Decreased nuclear beta-ca- tenin, Tau hyperphosphorylation and neurode- generation in GSK-3beta conditional transgenic mice. EMBO J. 2001; 20(1-2): 27-39. 33. Shi Y, Zhang W, Yang Y et al. Structure-based classification of tauopathies. Nature. 2021; 598: 359-363. 34. Gil L, Federico C, Pinedo F et al. Aging de- pendent effect of nuclear Tau. Brain Res. 2017; 1677: 129-137. 35. Mansuroglu Z, Benhelli-Mokrani H, Marcato V et al. Loss of Tau protein affects the struc- ture, transcription and repair of neuronal pe- ricentromeric heterochromatin. Sci Rep. 2016; 6: 33047. 36. Guo C, Jeong HH, Hsieh YC et al. Tau activates transposable elements in Alzheimer's disease. Cell Rep. 2018; 23: 2874-2880. 37. Ramírez P, Zuniga G, Sun W et al. Pathogenic Tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog Neurobiol. 2022; 208: 102181. 38. Sun W, Samimi H, Gámez M, Zare H, Frost B. Pathogenic Tau-induced piRNA depletion pro- motes neuronal death through transposable ele- ment dysregulation in neurodegenerative tauo- pathies. Nat Neurosci. 2018; 21: 1038-1048. 39. Kane AE, Sinclair DA. Epigenetic changes du- ring aging and their reprogramming potential. Crit Rev Biochem Mol Biol. 2019; 54: 61-83.

RkJQdWJsaXNoZXIy ODI4MTE=