Anales de la RANM

70 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 FUNDAMENTOS DE LA CAPACIDAD SENSORA DE GLUCOSA EN CEREBRO Blázquez Fernández E An RANM. 2023;140(01):65 - 71 ted glucagón-like peptide-1 receptor. Diabetes. 2001; 50: 1720-1728. 4. Jetton TL, Liang Y, Petetepher CC et al. Analy- sis of upstream glucokinase promoter activity in transgenic mice and identification of gluco- kinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994; 269: 3641-3654. 5. Barneo J, Pardal R, López-Barneo J. Low gluco- se-sensing cells in the carotid body. Nat Neu- rosci. 2002; 5: 197-198. 6. Liu M. Semo S, Kirchgessner AL. Identification and characterization of glucoresponsive neu- rons in the enteric nervous system. J Neurosci. 1999; 19: 10305-10317. 7. Álvarez E, Roncero I, Chowen JA, Thorens B, Blázquez E. Expression of the glucagon-like peptide-1 receptor gene in rat brain. J Neuro- chem. 1996; 66: 920-927. 8. Navarro M, Rodríguez de Fonseca F, Álvarez E et al. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT- 2, and glucokinase mRNAs in rat hypothalamic cells: Evidence for a role of GLP-1 receptor ago- nists as an inhibitory signal for food and water intake. J Neurochem. 1996; 67: 1982-1991. 9. Roncero I, Álvarez E, Vázquez P, Blázquez E. Functional glucokinase isoforms are expressed in rat brain. J Neurochem. 2000; 74: 1848-1857. 10. Magnuson MA, Shelton KD. An alternative promoter in the glucokinase gene is active in the pancreatic β cell. J Biol Chem. 1989; 264: 15936-15942. 11. Álvarez E, Roncero I, Chowen JA, Vázquez P, Blázquez E. Evidence that glucokinase regula- tory protein is expressed and intreacts with glu- cokinase in rat brain. J Neurochem. 2002; 80: 45-53. 12. Dean PM, Mathews EK, Sakamoto Y. Pancretic islet cells: Effects of monosaccharides, glyco- lytic intermediates and metabolic inhibitors on membrane potential and electric activity. J Phy- siol. 1975; 246: 456-478. 13. Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hy- pothalamic glucose sensor: Similarities to and differences from pancreatic beta-cell mecha- nisms. Diabetes. 1999; 18: 1763-1772. 14. Yang XJ, Kow LM, Pfaff DW, Mobbs C V. Me- tabolic pathways that mediate inhibition of hy- pothalamic neurons by glucose. Diabetes. 2004; 53: 67-73. 15. Karschin C, Aschcroft FM, Karschin A. Overlap- ping distibution of KATP channel-forming unit Kir6.2 subunit and the sulfonylurea receptor SUR 1 in rodent brain. FEBS Lett. 1997; 401: 9-64. 16. Dunn-Meynell AA, Routh VH, Kang I, Gaspess L, Levin BF. Glucokinase is the likely mediator of glucose sensing in both glucose-excited and glucose-inhibited central neurons. Diabetes. 2002; 5: 2056-2065. 17. Uranga RM, Millán C, Barahona MJ et al. Ade- novirus-mediated supression of hypothalamic glucokinase affects feeding behavior. Sci Rep. 2017; 7: 3697. https://doi.org/10.1038/s41598- 017-03928-x 18. García D, Shaw RJ. AMPK: Mechanisms of ce- llular energy sensing and restoration of meta- bolic balance. Mol Cell. 2017; 66: 789-800. 19. Hardie DG. AMP-activated protein kinase: Maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr. 2014; 14: 31-55. 20. López M. Hypothalamic AMPK and energy ba- lance. Eur J Clin Invest. 2018; 48(9): e12996. 21. Andersson U, Filipsson K, Abbott CR et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004; 279: 12005-12008. 22. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017; 169(2): 361-371. 23. Cota D, Proulx K, Smith KA et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006; 312( 5775): 927-930. 24. Hu F, Xu Y, Liu F. Hypothalamic roles of mTOR complex 1: Integration of nutrient and hor- mone signals to regulate energic homeostasis. Am J Physiol Endocrinol Metab. 2016; 310(11): E994-E1002. 25. Dagon Y, Hur E, Zhen B, Wellenstein K, Cant- ley LC, Kahn BB. P70S6 kinase phosphoryla- tes AMPK on serine 491 to mediate leptin´s. Effect on food intake. Cell Metab. 2012; 16: 104-112. 26. Kikani CK, Antoyisamy SA, Bonanno JB et al. Structural bases of PAS domain regulated kina- se (PASK) activation in the absence of activa- tion loop phosphorylation. J Biol Chem. 2010; 285(52): 41034-41043. 27. Moglich A, Ayers RA, Moffat K. Structure and signaling mechanism of Per-ARNT-Sim doma- ins. Structure. 2009; 17: 1282-1294. 28. DeMille D, Grose JH. PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life. 2013; 65(11): 921-929. 29. Zhang DD, Zhang JG, Wang YZ, Liu GL, Liu XY. Per-Arnt-Sim kinase (PASK): an emerging regulator of mammalian glucose and lipid me- tabolism. Nutrients. 2015; 7: 7437-7450. 30. Grose JH, Rutter J. The role of PAS kinase in PASsing the glucose signal. Sensors. 2010; 10: 5668-5682. 31. Hurtado-Carneiro V, Pérez García A, Álvarez E, Sanz C. PAS Kinase: a nutrient and energy sensor “master key” in the response to fasting/ feeding conditions. Front Endocrinol. 2020; 11: 594053. 32. Hurtado-Carneiro V, Roncero I, Blázquez E, Álvarez E, Sanz C. PAS kinase as a nutrient sensor in neuroblastoma and hypothalamic cells required for the normal expression and activity of other cellular nutrients and energy sensors. Mol Neurobiol. 2013; 48(3): 904-920. 33. Hurtado-Carneiro V, Roncero I, Egger SS et al. PAS kinase is a nutrient and energy sensor in hypothalamic areas required for the nor- mal function of AMPK and mTOR/S6K1. Mol Neurobiol. 2014; 50 (2): 314-326. 34. Hurtado-Carneiro V, Sanz C, Roncero I, Váz- quez P, Blázquez E, Álvarez E. Glucagon-like peptide 1 (GLP-1) can reverse AMP- Activa- ted Protein Kinase (AMPK) and S6 Kinase (P70S6K) Induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour. Mol Neurobiol. 2012; 45: 348-361.

RkJQdWJsaXNoZXIy ODI4MTE=