Anales de la RANM

71 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 FUNDAMENTOS DE LA CAPACIDAD SENSORA DE GLUCOSA EN CEREBRO Blázquez Fernández E An RANM. 2023;140(01):65 - 71 35. Pérez-García A, Dongil P, Hurtado-Carneiro V, Blázquez E, Sanz C, Álvarez E. PAS kinase deficiency alters the glucokinase function and hepatic metabolism. Sci Rep. 2018; 8(1): 1091. 36. Pérez-García A, Dongil P, Hurtado-Carneiro V, Blázquez E, Sanz C, Álvarez E. High-fat diet alters PAS kinase regulation by fasting and fe- eding in liver. J Nutr Biochem. 2018; 57: 14-25. 37. Blázquez E, Velázquez E, Hurtado-Carneiro V, Blázquez E, Ruiz-Albusac JM. Insulin in the bra- in: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and alzheimer´s disease. Front Endo- crinol. Neuroendocrine Sci. 2014; 5(161): 2-22 38. Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y et al. Significance of brain glucose hypometabo- lism, altered insulin signal transduction, and in- sulin resistance in several neurological diseases. Front Endocrinol. Neuroendocrine Sci. 2022; 13. https://doi.org/10.3389/fendo.2022.873301 39. Dongil P, Pérez-García A, Hurtado-Carneiro V, Herrero-de-Dios C, Álvarez E, Sanz C. PAS ki- nase deficiency reduces aging effects in mice. Aging (Albany NY). 2020; 12(3): 2275-2301. 40. Dongil P, Pérez-García A, Hurtado-Carneiro V et al. PAS kinase deficiency triggers antioxidant me- chanisms in the liver. Sci Rep. 2018; 8(1): 13810. 41. Carlson AJ. The control of hunger in health and disease. Chicago IL:The University of Chicago Press; 1919. 42. Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953; 249(1): 13-16. 43. Elizando-Vega R, Cortes-Campos Ch, Barahona MJ, Oyarce KA, Carril CA, García.Robles MA. The role of tanycytes in glucosensing. J Cell Mol. 2015; 19(7): 1471-14821. 44. Carneiro L, Pellerín L. Monocarboxylate trans- porters: new players in body weight regulation. Obes Rev. 2015; 16: 55-66. 45. Halestrap AP, Price WT. The protein-linked monocarboxylated transporter (MCT) family: Structure, function and regulation. Biochem J. 1999; 343: 281-299. 46. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011; 91: 733- 794. 47. O´Malley B, Reimann F, Simpson AK et al. So- dium-coupled glucose cotransporters contribu- te to hypothalamic glucose sensing. Diabetes. 2006; 55: 3381-3386. 48. McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: Rela- tionship to synaptic function. Eur J Pharmacol. 2004; 450: 13-24. 49. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: The role of nutrient transporters. J Cereb Blood Flow Metab. 2007; 27: 1766-1791. Si desea citar nuestro artículo: Blázquez-Fernández E. Fundamentos moleculares y fisiopato- lógicos de la capacidad sensora de glucosa por el cerebro. An RANM. 2023;140(01): 65– 71. DOI: 10.32440/ar.2023.140.01. rev07

RkJQdWJsaXNoZXIy ODI4MTE=