Anales de la RANM

183 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 XENO-TRASPLANTE, BIO-IMPRESIÓN ADITIVA 3D Y MANIPULACIÓN GÉNICA García-Montero Blanco C An RANM. 2023;140(02):170 - 184 16. Krishna M, Lepping P. Ethics of xeno-trans- plantation. BJMP. 2011; 4(3): a425. 17. Paris W, Jerry R, Seidlery H et al. Jewish, Chris- tian and Muslim theological perspectives about xenotransplantation. Xenotransplantation. 2018; 25(3): e12400. doi.org/10.1111/xen.1240 18. Jenkins ED, Yip M, Melman L et al: Informed consent: Cultural and religious issues associated with the use of allogeneic and xenogeneic mesh products. J Am Coll Surg. 2010; 210: 402-410. 19. Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol. 2015; 3: 43. https://doi.org/10.3389/fbioe.2015.00043 20. Breckwoldt K, Weinberger F, Eschenhagen T. Heart regeneration. Biochim Biophys Acta. 2016; 1863: 1749-1759. 21. Robinson KA, Li J, Mathison M et al. Extrace- llular matrix scaffold for cardiac repair. Circu- lation. 2005; 112(Suppl. 9): 135-143. 22. Alexanian RA, Mahapatra K, Lang D et al. Indu- ced cardiac progenitor cells repopulate decellu- larized mouse heart scaffolds and differentiate to generate cardiac tissue. Biochim Biophys Acta Mol Cell Res. 2020; 1867: 118559. 23. Mills RJ, Hudson JE. Bioengineering adult hu- man heart tissue: How close are we? APL Bioeng. 2019; 3(1): 010901. doi: 10.1063/1.5070106 24. Hillebrandt KH, Everwien H, Haep N et al. Stra- tegies based on organ decellularization and re- cellularization. Transpl Int. 2019; 32: 571-585. 25. Borow KM, Yaroshinsky A, Greenberg B et al. Phase 3 DREAM-HF trial of mesenchymal pre- cursor cells in chronic heart failure. Circ Res. 2019; 125(3): 265-281. 26. Bolli R, Hare JM, March KL et al. Rationale and design of the CONCERT-HF Trial (combination of mesenchymal and c-kit(+) cardiac stem cells as regenerative therapy for heart failure). Circ Res. 2018; 122(12): 1703-1715. 27. Li J, Hu S, Cheng K. Engineering better stem- cell therapies for treating heart diseases.Ann Transl Med. 2020; 8(8): 569. http://dx.doi. org/10.21037/atm.2020.03.44 28. Tiburcy M, Hudson JE, Balfanz P et al. Defined en- gineered human myocardium with advanced ma- turation for applications in heart failure modeling and repair. Circulation. 2017; 135(19): 1832-1847. 29. Hussain MWA, Garg P, Yazji JH, Alomari M, Alamouti-Fard E, Wadiwala I, Jacob S. Is a bioengineered heart from recipient tissues the answer to the shortage of donors in heart trans- plantation? Cureus. 2022; 14(5): e25329. doi: 10.7759/cureus.25329 30. Kałużna E, Nadel A, Zimna A, Rozwadowska N, Kolanowski T. Modeling the human heart ex vivo-current possibilities and strive for future applications. J Tissue Eng Regen Med. 2022; 16(10): 853-874. 31. Lee JM, Sing SL, Zhou M et al. 3D bioprinting processes: a perspective on classification and terminology. Int J Bioprint. 2018; 4(2): 151. http://dx.doi.org/10.18063/IJB.v4i2.151 32. Wilson WC Jr, Boland T. Cell and organ prin- ting 1: Protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003; 272(2): 491- 496. doi: 10.1002/ar.a.10057. 33. Paez-Mayorga J, Hernández-Vargas G, Ruiz- Esparza GU et al. Bioreactors for cardiac tissue engineering. Adv Healthc Mater. 2019; 8(7): e1701504. 34. Hogan M, Mohamed M, Tao ZW, Gutierrez L, Birla R. Establishing the framework to support bioartificial heart fabrication using fibrin-ba- sed three-dimensional artificial heart muscle. Artif Organs. 2015; 39(2): 165-171. 35. Noor N, Shapira A, Edri R et al. 3D printing of personalized thick and perfusable cardiac pat- ches and hearts. Adv Sci. 2019; 6(11): 1900344. 36. Lee A, Hudson A, Shiwarski D et al. 3D bioprin- ting of collagen to rebuild components of the human heart. Science. 2019; 365(6452): 482- 487. 37. Takahashi K, Yamanaka S. Induction of pluri- potent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663-676. 38. Lian X, Zhang J, Azarin SM et al. Directed car- diomyocyte differentiation from human pluri- potent stem cells by modulating Wnt/beta-ca- tenin signaling under fully defined conditions. Nat Protoc. 2013; 8(1): 162-175. 39. Leblanc AJ, Nguyen QT, Touroo JS et al. Adi- pose-derived cell construct stabilizes heart function and increases microvascular perfusion in an established infarct. StemCells Transl Med. 2013; 2(11): 896-905. 40. Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional bio- hybrid systems for future regenerative therapies. J Biomed Mater Res B. 2011; 98(1): 160-170. 41. Kozaniti FK, Metsiou DN, Manara AE, Athanas- siou G, Deligianni DD. Recent advancements in 3d printing and bioprinting methods for cardiovascular tissue engineering. Bioenginee- ring. 2021; 8 (10): 133. https://doi.org/10.3390/ bioengineering8100133 42. Ravi K. Birla, Stuart K. Williams. 3D bioprin- ting and its potential impact on cardiac failure treatment: an industry perspective. APL Bioeng. 2020; 4: 010903. doi: 10.1063/1.5128371 43. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Bio- med Mate Res A. 2013; 101(5): 1255-1264. 44. Li G, He X, Sun C. Induced pluripotent stem cell-based therapies for inherited arrhythmias: Opportunities and challenges involved (Re- view). Mol Med Rep. 2015. 11(1): 3-10. 45. Gurdon JB. The developmental capacity of nu- clei taken from intestinal epithelium cells of fe- eding tadpoles. J Embryol Exp Morphol. 1962; 10: 622-640. 46. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020; 27(4): 523-531. 47. Jinek M, Chylinski K, Fonfara I et al. A pro- gramable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337: 816-821. 48. Mandai M, Watanabe A, Kurimoto Y et al. Au- tologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017; 376: 1038-1046.

RkJQdWJsaXNoZXIy ODI4MTE=