Anales de la RANM

184 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 XENO-TRASPLANTE, BIO-IMPRESIÓN ADITIVA 3D Y MANIPULACIÓN GÉNICA García-Montero Blanco C An RANM. 2023;140(02):170 - 184 49. Konstantinov IE, King G, Porrello ER. From genome editing to blastocyst complementation: a new horizon in heart transplantation? JTCVS Tech. 2022; 12: 177-184. 50. Xu H, Wang B, Ono M et al. Targeted disrup- tion of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell. 2019; 24(4): 566-578.e7. 51. Rong Z,Wang M, Hu Z et al. An effective ap- proach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell. 2014; 14: 121-130. 52. Vagnozzi RJ, Maillet M, Sargent MA et al. An acu- te immune response underlies the benefit of car- diac stem cell therapy. Nature. 2020; 577: 405-409. 53. Guan X, Xu W, Zhang H et al. Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Stem Cell Res Ther. 2020; 11(1): 73. https://doi.org/10.1186/s13287-020-01602-0 54. Romagnuolo R, Masoudpour H, Porta-Sánchez A et al. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep. 2019; 12(5): 967-981. 55. Gao L, Gregorich ZR, ZhuW et al. Large cardiac muscle patches engineered from human indu- ced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation. 2018; 137(16): 1712-1730. 56. Kupfer ME, Lin W-H, Ravikumar V et al. In situ expansion, differentiation, and electrome- chanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ Res. 2020; 127: 207-224. 57. Matsunari H, Watanabe M, Hasegawa K et al. Compensation of disabled organogeneses in ge- netically modified pig fetuses by blastocyst com- plementation. Stem Cell Rep. 2020; 14(1): 21-33. 58. Yamaguchi T, Sato H, Kato-Itoh M et al. Interspe- cies organogenesis generates autologous functio- nal islets. Nature. 2017; 542(7640): 191-196. 59. Crane AT, Aravalli RN, Asakura A et al. Inters- pecies organogenesis for human transplanta- tion. Cell Transpl. 2019; 28 (9-10): 1091-1105. 60. Garry DJ, Garry MG. Interspecies chimeras and the generation of humanized organs. Circ Res. 2019; 124(1): 23-25. 61. Konstantinov IE, Ye XT, Fricke TA. From cellu- lar senescence to regeneration: a quest for the holy grail for the next generation of surgeons? J Thorac Cardiovasc Surg. 2017; 154(3): 953-954. 62. Founta KM, Papanayotou C. In vivo generation of organs by blastocyst complementation ad- vances and challenges. Int J Stem Cells. 2022; 15(2): 113-121. Si desea citar nuestro artículo: García-Montero Blanco C. Avances en Xeno-trasplante, Bio-impresión Aditiva 3D y Manipulación Génica para el futuro del Trasplante Cardia- co. An RANM. 2023;140(02): 170– 184. DOI: 10.32440/ar.2023.140.02 . rev06

RkJQdWJsaXNoZXIy ODI4MTE=