Anales de la RANM
296 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 REVISITANDO EL BINOMIO DAPTOMICINA Y ENTEROCOCOS Fernández-Alonso JA, et al. An RANM. 2023;140(03): 284 - 297 DECLARACIÓN DE TRANSPARENCIA Los autores/as de este artículo declaran no tener ningún tipo de conflicto de intereses respecto a lo expuesto en el presente trabajo. BIBIOGRAFÍA 1. Karas JA, Carter GP, Howden BP et al. Struc- ture-Activity Relationships of Daptomycin Li- popeptides. J Med Chem. 2020; 63(22): 13266- 13290. https://pubs.acs.org/doi/10.1021/acs. jmedchem.0c00780 2. Heidary M, Khosravi AD, Khoshnood S, Nasi- ri MJ, Soleimani S, Goudarzi M. Daptomycin. J AntimicrobChemother. 2018; 73(1): 1-11. https://doi.org/10.1093/jac/dkx349 3. Beiras-Fernandez A, Vogt F, Sodian R, Weis F. Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens. Infect Drug Resist. 2010; 3: 95-101. https://doi.org/10.2147/ IDR.S6961 4. Turner AM, Lee JYH, Gorrie CL, Howden BP, Carter GP. Genomic Insights Into Last-Line An- timicrobial Resistance in Multidrug-Resistant Staphylococcus and Vancomycin-Resistant En- terococcus. Front Microbiol. 2021; 12: 637-656. https://doi.org/10.3389/fmicb.2021.637656 5. Khan A, Miller WR, Axell-House D, Munita JM, Arias CA.AntimicrobialSusceptibilityTe stingforEnterococci. J Clin Microbiol. 2022; 60(9): e0084321. https://doi.org/10.1128/ jcm.00843-21 6. Vidal P, Fourniols E, Junot H, Meloni C, Blei- btreu A, Aubry A. Antibiotic Stewardship in Treatment of Osteoarticular Infections Based on Local Epidemiology and Bacterial Growth Times. MicrobiolSpectr.: e0143022. https://doi. org/10.1128/spectrum.01430-22 7. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicro- bial Susceptibility Testing. 31st ed. CLSI supple- ment M100 (ISBN 978-1-68440-104-8 [Print]; ISBN 978-1-68440-105-5 [Electronic]). Clinical and Laboratory Standards Institute, USA, 2021. (n.d.). Retrieved August 30, 2022, from https:// clsi.org/standards/products/microbiology/do- cuments/m100. 8. Del Rosario-García B, Nazco-Casariego GJ, Gómez-Sirvent JL et al. Vancomycin ver- sus daptomycin for the treatment of confir- med gram-positive catheter-related bloods- tream infections in oncology patients. Farm Hosp. 2022; 46(3): 105-108 https://dx.doi . org/10.7399/fh.11724 9. Turnidge J, Kahlmeter G, Cantón R, MacGowan A, Giske CG; European Committee on Anti- microbial Susceptibility Testing. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: a EUCAST po- sition paper. Clin Microbiol Infect. 2020; 26(8): 1039-1043. https://doi.org/10.1016/j. cmi.2020.04.027 10. Zhou, X, Willems, RJL, Friedrich, AW, Rossen JWA, Bathoorn E. Enterococcus faecium: from microbiological insights to practical recom- mendations for infection control and diagnos- tics. Antimicrob Resist Infect Control. 2020; 9, 130. https://doi.org/10.1186/s13756-020- 00770-1 11. Sorlózano A, Panesso D, Navarro-Marí JM, Arias CA, Gutiérrez-Fernández J. Characteriza- tion of daptomycin non-susceptible Enterococ- cus faecium producing urinary tract infection in a renal transplant recipient. Rev Esp Quimio- ter. 2015; 28(4): 207-9. PMID: 26200029; PM- CID: PMC5668868 12. Kelesidis T, Humphries R, Uslan DZ, Pe- gues D. De novodaptomycin-nonsuscepti- bleenterococcalinfections. Emerg Infect Dis. 2012; 18(4): 674-6. http://dx.doi.org/10.3201/ eid1804.110932 13. DiPippo AJ, Tverdek FP, Tarrand JJ et al. Dap- tomycin non-susceptible Enterococcus faecium in leukemia patients: Role of prior daptomycin exposure. J Infect. 2017; 74(3): 243-247. doi: 10.1016/j.jinf.2016.11. 14. Rodríguez Del Águila MM, Sorlózano-Puerto A, Fernández-Sierra MA, Navarro Marí JM, Gutiérrez Fernández J. Sociodemographic cha- racteristics and risk factors associated to sig- nificative bacteriuria in a Spanish health area. Rev Esp Quimioter. 2022; 35(4): 382-391. Spa- nish. doi: 10.37201/req/016.2022. https://doi. org/10.1056/NEJMOA1011138 15. Diaz L, Tran TT, Munita JM et al. Whole-ge- nome analyses of Enterococcus faecium isolates with diverse daptomycin MICs. Antimicrobial Agents and Chemotherapy. 2014;58(8), 4527– 4534. https://doi.org/10.1128/AAC.02686-14 16. Panesso D, Reyes J, Gaston EP et al. Deletion of liaR Reverses Daptomycin Resistance in Enterococcus faecium Independent of the Ge- netic Background. Antimicrob Agents Che- mother. 2015;59(12), 7327–7334. https://doi. org/10.1128/AAC.01073-15. 17. Chacko KI, Sullivan MJ, Beckford C et al. Ge- netic Basis of Emerging Vancomycin, Linezolid, and Daptomycin Heteroresistance in a Case of Persistent Enterococcus faecium Bacteremia. Antimicrob Agents Chemother. 2018;62(4). https://doi.org/10.1128/AAC.02007-17 18. Arias CA, Panesso D, McGrath DM et al. Ge- netic basis for in vivo daptomycin resistan- ce in enterococci. New Engl J of Med. 2011; 365(10): 892-900. https://doi.org/10.1056/NE- JMOA1011138 19. Khan A, Davlieva M, Panesso D et al. Antimi- crobial sensing coupled with cell membrane re- modeling mediates antibiotic resistance and vi- rulence in Enterococcus faecalis. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(52), 26925–26932 https://doi.org/10.1073/PNAS.1916037116. 20. Tran TT, Panesso D, Mishra NN et al. Dap- tomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division sep- tum and remodels cell membrane phospholi- pids. MBio. 2013; 4(4): e00281-13. https://doi. org/10.1128/MBIO.00281-13
RkJQdWJsaXNoZXIy ODI4MTE=