Anales de la RANM

19 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 ACCIONES PROTECTORAS Y REPARADORAS TISULARES DEL CBD Fernández-Tresguerres Hernández JA, et al. An RANM. 2024;141(01): 12 - 20 21. Zuardi AW, Cosme RA, Graeff FG, Gui- marães FS. Effects of ipsapirone and can- nabidiol on human experimental anxie- ty. J Psychopharmacol. 1993; 7: 82-88. doi:10.1177/026988119300700112. 22. Linge R, Jiménez-Sánchez L, Campa L et al. Cannabidiol induces rapid-acting antidepres- sant-like effects and enhances cortical 5-HT/ glutamate neurotransmission: Role of 5-HT1A Receptors. Neuropharmacology. 2016; 103: 16- 26. doi:10.1016/j.neuropharm.2015.12.017. 23. Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernández-Ruiz J. Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neuros- ci. 2007; 26: 843-851. doi:10.1111/j.1460- 9568.2007.05717.x. 24. Leweke FM, Piomelli D, Pahlisch F. Cannabi- diol enhances anandamide signaling and alle- viates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012; 2: e94. doi:10.1038/ tp.2012.15. 25. Di Marzo V, Bifulco M, De Petrocellis L. The Endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004; 3: 771-784. doi:10.1038/nrd1495. 26. Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci. 2021; 22: 9472. doi:10.3390/ ijms22179472. 27. Cristino L, Bisogno T, Di Marzo V. Canna- binoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020; 16: 9-29. doi:10.1038/s41582- 019-0284-z. 28. Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid re- ceptor agonist. Biochem Pharmacol. 1993; 46: 791-796. doi:10.1016/0006-2952(93)90486-g. 29. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characteriza- tion of an enzyme that degrades neuromodula- tory fatty-acid amides. Nature. 1996; 384: 83- 87. doi:10.1038/384083a0. 30. Tsou K, Nogueron MI, Muthian S. Fatty Acid Amide Hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neuros- ci Lett. 1998; 254: 137-140. doi:10.1016/s0304- 3940(98)00700-9. 31. Egertová M, Cravatt BF, Elphick MR. Compa- rative analysis of Fatty Acid Amide Hydrolase and Cb(1) Cannabinoid receptor expression in the mouse brain: Evidence of a widespread role for Fatty Acid Amide Hydrolase in regu- lation of endocannabinoid signaling. Neuros- cience. 2003; 11: 481-496. doi:10.1016/s0306- 4522(03)00145-3. 32. Lau BK, Drew GM, Mitchell VA, Vaughan CW. Endocannabinoid modulation by FAAH and monoacylglycerol lipase within the analgesic circuitry of the periaqueductal grey. Br J Phar- macol. 2014; 171: 5225-5236. doi:10.1111/ bph.12839. 33. Bisogno T, Maccarrone M. Latest advances in the discovery of Fatty Acid Amide Hydrolase inhibitors. Expert Opin Drug Discov. 2013; 8: 509-522. doi:10.1517/17460441.2013.780 021. 34. Tripathi RKP. A perspective review on Fatty Acid Amide Hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem. 2020; 188: 111953. doi:10.1016 /j.ej- mech.2019.111953. 35. Mikaeili H, Habib AM, Yeung CWL et al. Molecular basis of FAAH-OUT-Associated human pain insensitivity. Brain. 2023; 146: 3851-3865. doi:10.1093/brain/awad098. 36. Díaz-Del Cerro, Félix J, Joyera N, Tresgue- rres JAF, De la Fuente M. El Cannabidiol: Posible estrategia para mejorar la inmuno- senescencia y el estrés oxidativo del enve- jecimiento en ratas macho : 63º Congreso de la Sociedad Española de Geriatría y Ge- rontología (SEGG), Junio 2023, Pamplona, España. 37. Mazzoli A, Crescenzo R, Cigliano L et al. Early hepatic oxidative stress and mito- chondrial changes following western diet in middle aged rats. Nutrients. 2019; 11: 2670. doi:10.3390/nu11112670. 38. Park JH, Ha H. Short-term treatment of Daumone improves hepatic inflammation in aged mice. Korean J Physiol Phar- macol. 2015; 19. 269-274. doi:10.4196/ kjpp.2015.19.3.269. 39. Yang W, Burkhardt B, Fischer L et al. Age- dependent changes of the antioxidant sys- tem in rat livers are accompanied by alte- red MAPK activation and a decline in motor signaling. EXCLI J. 2015; 14: 1273-1290. doi:10.17179/excli2015-734. 40. Rancan L, Linillos-Pradillo B, Centeno J, Pa- redes SD, Vara E, Tresguerres JAF. Protective actions of cannabidiol on aging-related in- flammation, oxidative stress and apoptosis alterations in liver and lung of long evans rats. Antioxidants (Basel). 2023; 12: 1837. doi:10.3390/antiox12101837. 41. Salminen LE, Paul RH. Oxidative stress and genetic markers of suboptimal antioxi- dant defense in the aging brain: a theoreti- cal review. Rev Neurosci. 2014; 25: 805-819. doi:10.1515/revneuro-2014-0046. 42. Rajesh M, Mukhopadhyay P, Bátkai S et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol. 2007; 293: H610-619. doi:10.1152/ ajpheart.00236.2007. 43. Fouad AA, Albuali WH, Al-Mulhim AS, Jre- sat I. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. En- viron Toxicol Pharmacol. 2013; 36: 347-357. doi:10.1016/j.etap.2013.04.018. 44. Hamelink C, Hampson A, Wink DA, Eiden LE, Eskay RL. Comparison of cannabidiol, antioxidants, and diuretics in reversing binge ethanol-induced neurotoxicity. J Pharmacol Exp Ther. 2005; 314: 780-788. doi:10.1124/ jpet.105.085779.

RkJQdWJsaXNoZXIy ODI4MTE=