Anales de la RANM

219 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 TUMORES DE ESTIRPE NEUROBLÁSTICA EN EDAD PEDIÁTRICA Martí-Bonmatí L, et al. An RANM. 2024;141(03): 209 - 220 La normalización de la imagen es el factor más influyente en la estabilidad de las características radiómicas. Las variables de radiómica son biomar- cadores de imagen para la predicción de supervi- vencia en estos tumores. AGRADECIMIENTOS Agradecimientos: Parte de este trabajo está basado en la Tesis Doctoral de Diana Veiga-Canuto y en el Proyecto PRIMAGE (PRedictive In-silico Multis- cale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers), Grant Agreement 826494, Horizon 2020 SC1-DTH-2018-2020. DECLARACIÓN DE TRANSPARENCIA Los autores/as de este artículo declaran no tener ningún tipo de conflicto de intereses respecto a lo expuesto en el presente trabajo. BIBLIOGRAFÍA 1. Bhatnagar SN. An audit of malignant solid tu- mors in infants and neonates. J Neonatal Surg. 2012; 1(1): 5. 2. Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. From the archives of the AFIP: Neuroblas- toma, ganglioneuroblastoma, and ganglioneu- roma: Radiologic-pathologic correlation. Ra- dioGraphics. 2002; 22(4): 911-934. 3. Brisse HJ, McCarville MB, Granata C et al. Guidelines for imaging and staging of neu- roblastic tumors: Consensus Report from the International Neuroblastoma Risk Group Pro- ject. Radiology. 2011; 261(1): 243-257. 4. Irwin MS, Park JR. Neuroblastoma. Pediatr Clin North Am. 2015; 62(1): 225-256. 5. De Bernardi B, Pianca C, Pistamiglio P et al. Neu- roblastoma with symptomatic spinal cord com- pression at diagnosis: Treatment and results with 76 cases. J Clin Oncol. 2001; 19(1): 183-190. 6. PDQ Pediatric Treatment Editorial Board. Neu- roblastoma Treatment (PDQ®): Health Profes- sional Version. 2024 Feb 13. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK65747/. 7. Cohn SL, Pearson ADJ, London WB et al. The International Neuroblastoma Risk Group (INRG) Classification System: an INRG Task Force Report. J Clin Oncol. 2009; 27(2): 289- 297. 8. Monclair T, Mosseri V, Cecchetto G, De Bernar- di B, Michon J, Holmes K. Influence of image‐ defined risk factors on the outcome of patients with localised neuroblastoma: a report from the LNESG1 study of the European International Society of Paediatric Oncology Neuroblasto- ma Group. Pediatr Blood Cancer. 2015; 62(9): 1536-1542. 9. Matthay KK, Maris JM, Schleiermacher G et al. Neuroblastoma. Nat Rev Primer. 2016; 2: 16078. 10. Morgenstern DA, Pötschger U, Moreno L et al. Risk stratification of high-risk metastatic neu- roblastoma: a report from the HR-NBL-1/SIO- PEN study. Pediatr Blood Cancer. 2018; 65(11): e27363. 11. Ghosh A, Yekeler E, Teixeira SR, Dalal D, Sta- tes L. Role of MRI radiomics for the prediction of MYCN amplification in neuroblastomas. Eur Radiol. 2023; 33(10): 6726-6735. 12. Martí-Bonmatí L, Alberich-Bayarri Á, Ladens- tein R et al. PRIMAGE project: predictive in si- lico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur Radiol Exp. 2020; 4(1): 22. 13. Cozzi D, Bicci E, Cavigli E et al. Radiomics in pulmonary neuroendocrine tumours (NETs). Radiol Med (Torino). 2022; 127(6): 609-615. 14. Carbonell G, Kennedy P, Bane O et al. Precision of MRI radiomics features in the liver and hepa- tocellular carcinoma. Eur Radiol. 2022; 32(3): 2030-2040. 15. Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. radiology. 2021; 298(3): 505-516. 16. Lambin P, Leijenaar RTH, Deist TM et al. Ra- diomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin On- col. 2017; 4(12): 749-762. 17. Van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging. 2020; 11(1): 91. 18. Sun M, Baiyasi A, Liu X et al. Robustness and reproducibility of radiomics in T2 weighted images from magnetic resonance image gui- ded linear accelerator in a phantom study. Phys Med. 2022; 96: 130-139. 19. Joskowicz L, Cohen D, Caplan N, Sosna J. In- ter-observer variability of manual contour de- lineation of structures in CT. Eur Radiol. 2019; 29(3): 1391-1399. 20. Bø HK, Solheim O, Jakola AS, Kvistad KA, Rei- nertsen I, Berntsen EM. Intra-rater variability in low-grade glioma segmentation. J Neuroon- col. 2017;131(2): 393-402. 21. Feng F, Ashton‐Miller JA, DeLancey JOL, Luo J. Convolutional neural network‐based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse. Med Phys. 2020; 47(9): 4281-4293. 22. Ronneberger O, Fischer P, Brox T. U-Net: Con- volutional networks for biomedical image seg- mentation. En: Navab N, Hornegger J, Wells WM, Frangi AF, eds. Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234-241. 23. Veiga-Canuto D, Cerdá Alberich L, Fernán- dez-Patón M et al. Imaging biomarkers and

RkJQdWJsaXNoZXIy ODI4MTE=