Anales de la RANM

80 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 COVID-19 Y DAÑO VASCULAR Sánchez Ferrer CF, et al. An RANM. 2025;142(01): 73 - 81 recognition and cytokine receptors licen- se NLRP3 inflammasome activation by re- gulating NLRP3 expression. J Immunol. 2009;183: 787–791. doi: 10.4049/jimmu- nol.0901363 20. van den Berg DF, Te Velde AA. Severe CO- VID-19: NLRP3 Inflammasome dysregu- lated. Front Immunol. 2020; 11:1580. doi: 10.3389/fimmu.2020.01580 21. Ridker PM, Everett BM, Thuren T, et al. An- tiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017; 377:1119–1131. doi: 10.1056/NEJ- Moa1707914 22. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8:e46–7. doi: 10.1016/S2213-2600(20)30216- 2. Epub 2020 Apr 27. 23. Yasmin F, Najeeb H, Naeem U, et al. Adverse events following COVID-19 mRNA vaccines: a systematic review of cardiovascular com- plication, thrombosis, and thrombocytope- nia. Immun Inflamm Dis. 2023; 11:e807. doi: 10.1002/iid3.807 24. Yonker LM, Swank Z, Bartsch YC, et al. Circulating spike protein detected in post- COVID-19 mRNA vaccine myocarditis. Cir- culation. 2023; 147:867–876. doi: 10.1161/ CIRCULATIONAHA.122.061025 25. Ward SE, Curley GF, Lavin M, et al. Von Wi- llebrand factor propeptide in severe corona- virus disease 2019 (COVID-19): evidence of acute and sustained endothelial cell activa- tion. Br J Haematol. 2021; 192:714–719. doi: 10.1111/bjh.17273 26. Wibowo A, Pranata R, Lim MA, et al. En- dotheliopathy marked by high von Wille- brand factor (vWF) antigen in COVID-19 is associated with poor outcome: a syste- matic review and meta-analysis. Int J In- fect Dis. 2022; 117:267–273. doi: 10.1016/j. ijid.2021.06.051 27. Santamaria S, de Groot R. ADAMTS protea- ses in cardiovascular physiology and disease. Open Biol. 2020; 10:200333. doi: 10.1098/ rsob.200333 28. Marco A, Marco P. Von Willebrand factor and ADAMTS13 activity as clinical seve- rity markers in patients with COVID-19. J Thromb Thrombol. 2021; 52:497–503. doi: 10.1007/s11239-021-02457-9 29. Sachetto TAA, Mackman N. Tissue factor and COVID-19: an update. Curr Drug Tar- gets. 2022; 23:1573–1577. doi: 10.2174/1389 450123666220926144432 30. Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell sig- naling. J Thromb Haemost. 2018; 16:1941– 1952. doi: 10.1111/jth.14246 31. Bertoni A, Penco F, Mollica H, et al. Spon- taneous NLRP3 inf lammasome-driven IL-1β secretion is induced in severe CO- VID-19 patients and responds to ana- kinra treatment. J Allerg y Clin Immu- nol. 2022; 150:796–805. doi: 10.1016/j. jaci.2022.05.029 32. Radzikowska U, Ding M, Tan G, et al. Dis- tribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020; 75:2829–2845. doi: 10.1111/all.14429 33. McCracken IR, Saginc G, He L, et al. Lack of evidence of angiotensin-converting enzyme 2 expression and replicative infection by SARS- CoV-2 in human endothelial cells. Circula- tion. 2021; 143:865–868. doi: 10.1161/CIR- CULATIONAHA.120.052824 34. den Dekker WK, Cheng C, et al. Toll like re- ceptor 4 in atherosclerosis and plaque destabi- lization. Atherosclerosis. 2010; 209: 314–320. doi: 10.1016/j.atherosclerosis.2009.09.075 35. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 sig- nal transduction pathway. Cytokine. 2008; 42:145–151. doi: 10.1016/j.cyto.2008.01.006 36. Kaushik D, Bhandari R, Kuhad A. TLR4 as a therapeutic target for respiratory and neuro- logical complications of SARS-CoV-2. Expert Opin Ther Targets. 2021; 25:491–508. doi: 10.1080/14728222.2021.1918103 37. Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 se- quelae. Clin Infect Dis. 2023; 76: e487–90. doi: 10.1093/cid/ciac722 38. Villacampa A, Shamoon L, Valencia I, et al. SARS-CoV-2 S protein reduces cytoprotecti- ve defenses and promotes human endothelial cell senescence. Aging Dis. 2024 Jul 5. doi: 10.14336/AD.2024.0405. 39. Saz-Lara A, Cavero-Redondo I, Pascual-Mo- rena C, et al. Early vascular aging as an in- dex of cardiovascular risk in healthy adults: confirmatory factor analysis from the EVas- Cu study. Cardiovasc Diabetol. 2023 Aug 17; 22(1):209. doi: 10.1186/s12933-023-01947-9. 40. Khavinson V, Linkova N, Dyatlova A, et al. Senescence-associated secretory phenotype of cardiovascular system cells and inflam- maging: perspectives of peptide regulation. Cells. 2022 Dec 27;12(1):106. doi: 10.3390/ cells12010106. 41. Birch J, Gil J. Senescence and the SASP: Many therapeutic avenues. Genes Dev. 2020 Dec 1; 34(23-24):1565-1576. doi: 10.1101/ gad.343129.120 42. Bochenek ML, Schütz E, Schäfer K. Endothe- lial cell senescence and thrombosis: Ageing clots. Thromb Res. 2016: 147:36-45. doi: 10.1016/j.thromres.2016.09.019. 43. Valencia I, Lumpuy-Castillo J, Magalhaes G, et al. Mechanisms of endothelial activation, hypercoagulation and thrombosis in CO- VID-19: a link with diabetes mellitus. Cardio- vasc Diabetol. 2024; 23(1):75. doi: 10.1186/ s12933-023-02097-8. 44. Han Y, Kim SY. Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med. 2023;55(1): 1-12. doi: 10.1038/ s12276-022-00906-w.

RkJQdWJsaXNoZXIy ODI4MTE=