Anales de la RANM

268 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 AVANCES DE LA IMAGEN POR RESONANCIA MAGNÉTICA CARDIACA Sánchez-González J, et al. An RANM. 2025;142(03): 263 - 269 de la RMC está impulsando directamente el diseño de intervenciones clínicas como el ensayo RESILIENCE, cuyo objetivo es proteger el estado de la mitocondria y la microcirculación mediante el condicionamiento isquémico remoto (RIC). En última instancia, la RM cardiaca avanzada no solo mejora el diagnóstico, sino que también sirve como una plataforma crítica para la investi- gación traslacional dirigida a la prevención de la enfermedad cardiovascular. DECLARACIÓN DE TRANSPARENCIA Javier Sánchez-González y Alvaro Navarro Guzman son empleados de Philips Healthcare. El resto de los autores/as de este artículo declaran no tener ningún tipo de conflicto de intereses respecto a lo expuesto en el presente trabajo. BIBLIOGRAFÍA 1. Sánchez-González J, Fernandez-Jiménez R, Nothnagel ND, López-Martín G, Fuster V, Iba- ñez B. Optimization of dual-saturation sin- gle bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps. J Cardiovasc Magn Reson. 2015;17(1):21. 2. Fernández-Jiménez R, Sánchez-González J, Aguero J, Del Trigo M, Galán-Arriola C, Fus- ter V, et al. Fast T2 gradient-spin-echo (T2- GraSE) mapping for myocardial edema quan- tification: first in vivo validation in a porcine model of ischemia/reperfusion. J Cardiovasc Magn Reson. 2015;17(1):92 3. Gómez-Talavera S, Fernandez-Jimenez R, Fuster V, Nothnagel ND, Kouwenhoven M, Clemence M, et al. Clinical validation of a 3-dimensional ultrafast cardiac magnetic resonance protocol including single breath- hold 3-dimensional sequences. JACC Cardio- vasc Imaging. 2021;14(9):1742–54. 4. Devesa A, Fuster V, García-Lunar I, Oliva B, García-Alvarez A, Moreno-Arciniegas A, et al. Coronary microvascular function in asymptomatic middle-aged individuals with cardiometabolic risk factors. JACC Cardio- vasc Imaging. 2025;18(1):48–58. 5. Gómez-Talavera S, Navarro-Guzmán Á, Fer- nández-Jiménez R, Fuster V, Sánchez-Gonzá- lez J, Ibáñez B. ESSOS single breath-hold 3D magnetic resonance for the assessment of aor- tic dilation. Rev Esp Cardiol (Engl Ed). 2025. 6. Kikuchi Y, Oyama-Manabe N, Naya M, Ma- nabe O, Tomiyama Y, Sasaki T, et al. Quan- tification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 15O-H₂O PET. Eur Radiol. 2014;24(7):1547–56. 7. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quan- tification of absolute myocardial perfusion in patients with coronary artery disease: com- parison between cardiovascular magnetic re- sonance and positron emission tomography. J Am Coll Cardiol. 2012;60(16):1546–55. 8. Nagel E, Greenwood JP, McCann GP, Betten- court N, Shah AM, Hussain ST, et al. Mag- netic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med. 2019;380(25):2418–28. 9. Hsu L-Y, Rhoads KL, Holly JE, Kellman P, Ale- tras AH, Arai AE. Quantitative myocardial per- fusion analysis with a dual-bolus contrast-en- hanced first-pass MRI technique in humans. J Magn Reson Imaging. 2006;23(3):315–22. 10. Villa ADM, Corsinovi L, Ntalas I, Milidonis X, Scannell C, Di Giovine G, et al. Importance of operator training and rest perfusion on the diagnostic accuracy of stress perfusion car- diovascular magnetic resonance. J Cardiovasc Magn Reson. 2018;20(1):74. 11. Gatehouse PD, Elkington AG, Ablitt NA, Yang G-Z, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function du- ring high-dose myocardial perfusion cardio- vascular magnetic resonance. J Magn Reson Imaging. 2004;20(1):39–45. 12. Lyon AR, López-Fernández T, Couch LS, As- teggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC guidelines on cardio-oncology de- veloped in collaboration with the European hematology association (EHA), the European society for therapeutic radiology and on- cology (ESTRO) and the international car- dio-oncology society (IC-OS). Eur Heart J. 2022;43(41):4229–361. 13. López-Sendón J, Álvarez-Ortega C, Zamora Auñon P, Buño Soto A, Lyon AR, Farmakis D, et al. Classification, prevalence, and outco- mes of anticancer therapy-induced cardio- toxicity: the CARDIOTOX registry. Eur Heart J. 2020;41(18):1720–9. 14. Galán-Arriola, C., Lobo, M., Vílchez-Tschis- chke, J. P., López, G. J., de Molina-Iracheta, A., Pérez-Martínez, C., Agüero, J., Fernández- Jiménez, R., Martín-García, A., Oliver, E., Vi- llena-Gutierrez, R., Pizarro, G., Sánchez, P. L., Fuster, V., Sánchez-González, J., & Ibanez, B. (2019). Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. Journal of the American Colle- ge of Cardiology, 73(7), 779–791. 15. Galán-Arriola C, Vílchez-Tschischke JP, Lobo M, López GJ, de Molina-Iracheta A, Pérez- Martínez C, et al. Coronary microcirculation damage in anthracycline cardiotoxicity. Car- diovasc Res. 2022;118(2):531–41. 16. Yeh ETH, Chang H-M. Oncocardiology-past, present, and future: A review. JAMA Cardiol. 2016;1(9):1066–72. 17. Heusch G, Bøtker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015;65(2):177–95. 18. Lau JK, Roy P, Javadzadegan A, Moshfegh A, Fearon WF, Ng M, et al. Remote ischemic pre- conditioning acutely improves coronary mi- crocirculatory function. J Am Heart Assoc. 2018;7(19):e009058.

RkJQdWJsaXNoZXIy ODI4MTE=