Anales de la RANM

148 A N A L E S R A N M R E V I S T A F U N D A D A E N 1 8 7 9 MODELOS EXPERIMENTALES DE EPILEPTOGÉNESIS Pozo MA, et al. An RANM. 2022;139(02): 140 - 149 6. Schmidt D. Drug treatment strategies for epi- lepsy revisited: starting early or late? One drug or several drugs? Epileptic Disord. 2016; 18(4): 356. 7. Pitkänen A, Löscher W, Vezzani A, et al. Advan- ces in the development of biomarkers for epi- lepsy. Lancet Neurol. 2016; 15(8):843. 8. Becker AJ. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol. 2018; 44(1):112. 9. Martín ED, Pozo MA Animal Models for the Development of New Neuropharmacological Therapeutics in the Status Epilepticus. Curr Neuropharmacol. 2006; 4(1): 33-40. 10. Nirwan N, Vyas P, Vohora D. Animal models of status epilepticus and temporal lobe epi- lepsy: a narrative review. Rev Neurosci. 2018; 29(7):757. 11. Nadler JV, Perry BW, Cotman CW. Intraven- tricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 1978; 271:676. 12. Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013; 37(10 Pt 2):2887. 13. Enright N., Simonato M, Henshall DC. Dis- covery and validation of blood microRNAs as molecular biomarkers of epilepsy: ways to close current knowledge gaps. Epilepsy Open. 2018; 3: 427. 14. Polli RS, Malheiros JM, Dos Santos R, et al. Changes in Hippocampal Volume are Corre- lated with Cell Loss but Not with Seizure Fre- quency in Two Chronic Models of Temporal Lobe Epilepsy. Front Neurol. 2014; 1;5:111. 15. Vezzani A, Balosso S, Ravizza T. Neuroinflam- matory pathways as treatment targets and bio- markers in epilepsy. Nat Rev Neurol. 2019; 15: 459. 16. García-García L, Shiha AA, Bascuñana P, et al. Serotonin depletion does not modify the short-term brain hypometabolism and hip- pocampal neurodegeneration induced by the lithium–pilocarpine model of status epilepti- cus in rats. Cell Mol Neurobiol. 2016; 36 (4): 513-9. 17. García-García L, de la Rosa RF, Delgado M, et al. Metyrapone prevents acute glucose hy- permetabolism and short-term brain damage induced by intrahippocampal administration of 4-aminopyridine in rats. Neurochem Int. 2018; 113: 92-106. 18. Bascuñana, P, Javela, J, Delgado, M, et al. [18F] FDG PET Neuroimaging Predicts Pentylenete- trazole (PTZ) Kindling Outcome in Rats. Mol Imaging Biol. 2016; 18:733. 19. Bascuñana P, García-García L, Javela J, et al. PET neuroimaging reveals serotonergic and metabolic dysfunctions in the hippocampal electrical kindling model of epileptogenesis. Neuroscience. 2019; 409: 101-10. 20. García-García L, Shiha AA, Fernández de la Rosa R, et al. Metyrapone prevents brain da- mage induced by status epilepticus in the rat lithium-pilocarpine model. Neuropharmacolo- gy. 2017; 123:261. 21. Simonato M, Agoston DV, Brooks-Kayal A, et al., Identification of clinically relevant biomar- kers of epileptogenesis. A strategic roadmap. Nat Rev Neurol. 2021; 17(4): 231. 22. Dienel GA. Brain Glucose Metabolism: Integra- tion of Energetics with Function. Physiol Rev. 2019; 99: 949-1045. 23. Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measu- rement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neuro- chem. 1977; 28(5):897-916. 24. Blass JP. Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia?. J Neurosci Res. 2001; 66(5):851. 25. Jupp B, Williams J, Binns D. Hypometabolism precedes limbic atrophy and spontaneous recu- rrent seizures in a rat model of TLE. Epilepsia. 2012; 53(7):1233. 26. Reid AY, Staba RJ. Limbic Networks. Int Rev Neurobiol. 2014; 114:89-120. 27. Govil-Dalela T, Kumar A, Behen ME, Harry T. Chugani HT, Juhász C. Evolution of lobar ab- normalities of cerebral glucose metabolism in 41 children with drug-resistant epilepsy. Epi- lepsia. 2018; 59:1307. 28. Henshall DC, Engel T. Contribution of apopto- sis-associated signaling pathways to epilepto- genesis: lessons from Bcl-2 family knockouts. Front Cell Neurosci. 2013; 7:110. 29. Al Sufiani F, Ang LC. Neuropathology of tem- poral lobe epilepsy. Epilepsy Res Treat. 2012; 2012:624519. 30. Rattka M , Brandt C, Löscher W. The intrahip- pocampal kainate model of temporal lobe epi- lepsy revisited: epileptogenesis, behavioral and cognitive alterations, pharmacological respon- se, and hippocampal damage in epileptic rats. Epilepsy Res. 201; 103(2-3):135. 31. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitabi- lity and inflammation. Trends Neurosci. 2013; 36(3):174. 32. Sofroniew MV, Vinters HV. Astrocytes: bio- logy and pathology Acta Neuropathol. 2010; 119(1):7-35. 33. Horner PJ, Gage FH. Regenerating the da- maged central nervous system. Nature. 2000; 407(6807):963. 34. Fawcett JW, Asher RA. The glial scar and cen- tral nervous system repair. Brain Res Bull. 1999; 49(6):377. 35. Giulian D. Reactive glia as rivals in regulating neuronal survival. Glia. 1993; 7(1):102. 36. Li FQ, Wang T, Pei Z, Liu B, Hong JS. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J Neu- ral Transm. (Vienna). 2005; 112(3):331. 37. Jabs R, Seifert G, Steinhäuser C. Astrocytic function and its alteration in the epileptic bra- in. Epilepsia. 2008; 49 Suppl 2:3-12. 38. Ujita S, Sasaki T, Asada A et al. cAMP-dependent calcium oscillations of astrocytes: An implication for pathology. Cereb Cortex. 2017; 27(2):1602.

RkJQdWJsaXNoZXIy ODI4MTE=